

Coated nanoparticles in solvents and at interfaces

J. Matthew Lane

Sandia National Laboratories Albuquerque, NM

25 February 2010 LAMMPS Workshop

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Problem description

Courtesy of P. R. Schunk

System details

• Polyethylene oxide PEO(6) coated 5nm silica nanoparticle in water (3 chains/nm²)

Amorphous silica particles

- 5 nm diameter
- Treated as rigid objects

PEO chains

- ca. 240 per 5 nm particle
- Attached at OH sites

Water solvent used with PEO

MD run details

- T = 300 K
- 10 Å cutoff on pair potentials
- $-4x10^{5} 7.2x10^{6}$ atoms
- Timestep 1fs runs of 5-10ns

Lane et al, PRE 79, 050501 (2009)

Interactions between nanoparticles

- Determine velocity independent (solvation) and velocity dependent (lubrication) forces
 -chain length, nanoparticle size/shape, coverage
- Integrate into coarse-grained model

Interactions between nanoparticles

PEO-coated silica NP in water

- PEO(20), 1.0 chains/nm² PEO(100), 0.5 chains/nm²
- Mitra et al, Langmuir 19, 8994 (2003) exp. PEO(100), 0.2chains/nm²

Constructing model Au-thiol nanoparticles

Fact sheet:

2, 4, and 8 nm diameter core with Au implicit

S-(CH₂)₉-X and S-(CH₂)₁₇-X where X = CH₃ or COOH

Simple structure of 60, 240 and 960 rigid grafting sites from fullerene structure

Constant coverage density of 21 Å² per chain

•D. Dunphy, UNM/Sandia personal communication

Place each in decane, water and Brownian solvents.

2 to 8 nm coated nanoparticle cores

Geometry as a control parameter

- •Particle size, *r*
- •Chain length, *l*
- •Change in free volume per chain

Geometry as a control parameter

		I MARC	Decane	Implicit	Water
D	Chain	$\Delta v (nm^3)$	s.d.	s.d.	s.d.
2	S-(CH ₂) ₁₇ -CH ₃	0.844	59.5%	75.3%	68.2%
4	S-(CH ₂) ₁₇ -CH ₃	0.362	49.1%	52.5%	46.3%
2	S-(CH ₂) ₉ -CH ₃	0.252	31.5%	36.1%	32.4%
8	S-(CH ₂) ₁₇ -CH ₃	0.166	23.9%	38.7%	33.0%
4	S-(CH ₂) ₉ -CH ₃	0.115	23.8%	25.2%	33.3%
8	S-(CH ₂) ₉ -CH ₃	0.054	14.8%	17.4%	22.2%
2	S-(CH ₂) ₁₇ -COOH	0.844	68.9%	55.1%	82.1%
4	S-(CH ₂) ₁₇ -COOH	0.362	52.4%	59.6%	66.6%
2	S-(CH ₂) ₉ -COOH	0.252	47.3%	50.6%	48.2%
8	S-(CH ₂) ₁₇ -COOH	0.166	36.9%	42.3%	41.8%
4	S-(CH ₂) ₉ -COOH	0.115	34.9%	41.6%	33.8%
8	S-(CH ₂) ₉ -COOH	0.054	22.1%	27.6%	19.7%

- •Particle size, *r*
- •Chain length, *l*

•Change in free volume per chain

$$\Delta v = \frac{V_{\text{sphere}} - V_{\text{flat}}}{\# \text{ of chains}} = \frac{1}{3\sigma} \left[\frac{l^3}{r^2} + 3\frac{l^2}{r} \right]$$

Effect of mixed-chain termination

Coating termination is an important secondary variable

Bundling:

•Mixed-chains decreased uniformity in the coating surface

•Mixed chains tended toward small tight bundles unless solvated

Effect of solvent and backbone

Solvent quality is another important secondary variable

Homogeneous chains behaved largely as expected to solvent changes based on hydrophilic/ phobic interactions

Mixed-chains deceased uniformity in the coating surface as chains tended toward small tight bundles unless solvated

Surface initial conditions

- NPs placed at liquid/ vapor interface of water
- All 12 particle type were began equilibrated in implicit solvent
- Simulation continued until vertical motion ceased

Coated particles at a water surface

- How will collections of particles behave at the surface?
- Can we preselect drivers of self-assembly by altering the particle coatings?

COOH terminal group

CH₃ terminal group

Summary and conclusions

- Nanoscale forces between functionalized NPs can be found from fully-atomistic simulations
 - Contact forces between NPs are velocity & separation dependent
 - Coatings remove features of bare NPs make more like macroscopic
 - The important regime for NP interactions in solution is F < 1nN making accurate force extraction difficult
 - Coarse-grained NPs will allow study of longer time and length scales

 Coating quality can be dramatically affected by geometry and secondarily by coating and solvent interactions

• "Poor" coatings could be exploited at surfaces and in the bulk to select structures during self-assembly

•Resources now available to make significant inroads in understanding nanoparticle suspensions

Collaborators

• Sandia:	Gary Grest, Ahmed Ismail, Michael Chandross, Jeremy Lechman, Steve Plimpton
•Sandia/UNM:	P. Randal Schunk, Tim Boyle
 Univ of Utah: 	Matt Petersen
 King's College: 	Christian Lorenz