

Atoms-to-Continuum (AtC) user package for LAMMPS

Reese Jones, Jeremy Templeton,

Gregory Wagner, Jonathan Zimmerman

Sandia National Laboratories, Livermore, CA

LAMMPS Workshop Albuquerque, New Mexico February 24-26, 2010

Objectives for Package

- Calculation of continuum mechanical variables from atomistic simulation data using the Hardy's Eulerian formulation and our Lagrangian formulation.
- Coupling of atomistic (MD, MS) and continuum (finite element) regions for rigorous thermal and mechanical boundary conditions.
- Coupling to emulate electronic temperature effects in metals via the two temperature model (TTM).

simulation of shock loading

Electron-transport enhanced simulation of heating and deformation of a metallic CNT

fix atc

fix ID groupID atc type paramfile

- ID, group-ID are documented in fix command
- type = *thermal* or *two_temperature* or *hardy*
 - thermal = thermal coupling with field: temperature
 - *two_temperature* = electron-phonon coupling with field, temperature and electron_temperature
 - hardy = Hardy on-the-fly post-processing
- paramfile = file with material parameters (not specified for hardy type)

The atc picture: mesh, box and atoms

Saltwater-electrode-CNT system: mesh overlaps exactly with water-CNT atom region

Circular hole in plate: mesh overlaps exactly with box, but atom region is subset

Elastic inclusion problem: mesh overlaps exactly with box and atoms

Hardy on-the-fly post-processing

Hardy (Journal of Chemical Physics, 1982) $\psi = 0$ Zimmerman et al. (MSMSE, 2004) Zimmerman et al. (Journal of Computational Physics, 2010) # ...create and initialize the MD system $\psi > 0$ fix AtC internal atc hardy fix modify AtC fem create mesh 1 1 1 box p p p fix modify AtC atom element map eulerian 100 fix modify AtC transfer fields none fix modify AtC transfer fields add density energy stress temperature fix modify AtC transfer output nvtFE 100 text run 1000

Common fix_modify commands for atc-hardy

Setup:

fix_modify AtC fem create mesh

fix_modify AtC transfer internal

Control and time filtering:

fix_modify AtC transfer filter

fix_modify AtC transfer filter scale

fix_modify AtC transfer atom_element_map

fix_modify AtC transfer neighbor_reset_frequency

fix_modify AtC transfer kernel

Output: text and EnSight

fix_modify AtC transfer output

fix_modify AtC transfer atomic_output

fix_modify AtC mesh output

Common fix_modify commands for atc-hardy

Computation of fields:

fix_modify AtC transfer fields
fix_modify AtC transfer gradients
fix_modify AtC transfer rates
fix_modify AtC transfer computes
fix_modify AtC set
fix_modify AtC transfer on_the_fly
fix_modify AtC boundary_integral
fix_modify AtC contour_integral

Examples of using atc-hardy

1D elements

Thermal coupling using atc

Coupled FEM/MD equations

$$\sum_{J} M_{IJ} \dot{\theta}_{J} = \frac{2}{3k_{B}} \sum_{\alpha} N_{I\alpha} \left(\mathbf{v}_{\alpha} \cdot \mathbf{f}_{\alpha} \right) \Delta V_{\alpha} + \sum_{J} K_{IJ}^{fem} \theta_{J}$$

$$m_{\alpha} \dot{\mathbf{v}}_{\alpha} = -\frac{\partial U}{\partial \mathbf{x}_{\alpha}} - \sum_{T} N_{I\alpha} \lambda_{T} \mathbf{v}_{\alpha}$$

Coupling parameter (temperature/flux constraint)

Atoms contribute to nodal heat equation

Combined MD/FEM system

has two-way coupling:

Heat at nodes affects MD energy through thermostat

Two-Temperature coupling using atc

Energy exchange handled though thermostats as in the thermal-only problem

Example of using atc-thermal

2D diffusion problem

- Plate with embedded MD region (~33,000 atoms)
- Initialized to temperature field with gaussian profile
- Adiabatic boundary conditions at edges

Future work: other physical models

• Elasto-dynamic response at the nano-scale

- Fluidic species transport
 - \odot Transport of saltwater into NTs
 - \circ Energy storage devices
 - Long-range electrostatic interactions

on FE mesh

