

Two-temperature (TTM) molecular dynamics

Jeffery A. Greathouse

Sandia National Laboratories, Albuquerque, New Mexico

TTM implementation in LAMMPS Paul Crozier, Carolyn Phillips

Cascade damage example Paul Crozier, Stephen Foiles, Ahmed Ismail

Electronic effects: two temperature model (TTM)

- Model radiation-excited carrier gas consisting of hot electrons and holes
- Provide a mechanism for energy exchange between radiation-excited carrier gas and atoms
- Conserves energy (electronic and atomic)
- Electron-ion energy transfer based on a Langevin thermostat
- Electronic temperature controlled by a heat diffusion equation

Duffy and Rutherford, *J. Phys. Condens. Matter* **2007** Rutherford and Duffy, *J. Phys. Condens. Matter* **2007**

TTM theory

 γ values are user-specified constants related to relaxation times (τ)

Energy transport in the electronic subsystem via the heat diffusion equation

$$C_{e} \frac{\partial T_{e}}{\partial t} = \nabla (\kappa_{e} \nabla T_{e}) - g_{p} (T_{e} - T_{a}) + g_{s} T_{a}'$$

- Electron temperature (T_e) varies locally.
- \bullet T_e is taken as an average in a spatial cell.
- Heat eqn is discretized and solved numerically.
- User supplies initial T_e values.
- LAMMPS keeps track of time evolution of T_e values.
- C_e and κ_e are user-specified constants.
- The T values and "coupling constants" (g_p and g_s) vary spatially and temporally.

Link between the electronic and atomic sub-systems

Energy loss of the atomic sub-system:

$$\Delta U_i = \mathbf{F}_i \cdot \mathbf{v}_i \Delta t = \gamma_i v_i^2 \Delta t \quad \Delta U_l = \Delta t \sum_{i \in J} \gamma_i v_i^2 = \Delta t \sum_{i \in J} \gamma_p v_i^2 + \Delta t \sum_{i' \in J} \gamma_s v_i'^2$$

Energy gain of the electronic sub-system:

$$\Delta U_{\rm eg} = g_{\rm p} T_{\rm a} \Delta V \Delta t + g_{\rm s} T_{\rm a}' \Delta V \Delta t.$$

Equate the two:

$$\sum_{i \in J} \gamma_{p} v_{i}^{2} = g_{p} T_{a} \Delta V$$
$$\sum_{i' \in J} \gamma_{s} v_{i}^{\prime 2} = g_{s} T_{a}^{\prime} \Delta V$$

And solve for the coupling "constants":

$$g_{\rm p} = \frac{3Nk_{\rm B}\gamma_{\rm p}}{\Delta Vm}$$
$$g_{\rm s} = \frac{3N'k_{\rm B}\gamma_{\rm s}}{\Delta Vm}.$$

Define the atomic T values:

$$\frac{3}{2}k_{\rm B}T_{\rm a} = 1/N \sum_{i \in J} \frac{1}{2}mv_i^2$$

 $\frac{3}{2}k_{\rm B}T_{\rm a}' = 1/N' \sum_{i' \in J} \frac{1}{2}mv_i'^2$

Implementation in LAMMPS

- Generalized for use with multiple atom types.
- T_e varies in time and in all three spatial dimensions.
- User supplies physical constants and initial T_e values.
- Reasonable energy conservation achieved.
- Models thermal conductivity and finite heat capacity of the electron subsystem.

Phillips and Crozier, J. Chem. Phys. 2009, 131, 074701

TTM input parameters (fix ttm)

- Electron specific heat*
- Electron density*
- Electron thermal conductivity
- Electron-ion interaction coefficient, γ_{p}^{*}
- Electron stopping friction coefficient, γ_s (SRIM tables, <u>www.srim.org</u>)
- Electron stopping critical velocity, v₀
- Number of electronic grid points
- Initial electron temperature

* DFT calculations can be used to estimate these values

Example: cascade damage simulation

Gadolinium pyrochlore waste form (Gd₂Zr₂O₇)

8

Large initial velocity (10 keV) imparted to the primary knock-on atom (PKA) to simulate a radiation recoil event

Non-TTM results: Gd defects

Results of defect analysis

10

Atomic and electronic temperature

PKA (U atom) displacement results

