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Electronic effects: two temperature model (TTM)

Duffy and Rutherford, J. Phys. Condens. Matter 2007
Rutherford and Duffy, J. Phys. Condens. Matter 2007

►Model radiation-excited carrier gas consisting of hot 
electrons and holes

►Provide a mechanism for energy exchange 
between radiation-excited carrier gas and atoms

►Conserves energy (electronic and atomic)

►Electron-ion energy transfer based on a Langevin 
thermostat

►Electronic temperature controlled by a heat 
diffusion equation
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TTM theory

spi γγγ +=

pi γγ =

For vi > vo

For vi ≤ vo
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γ values are user-specified constants related to relaxation times (τ)
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Energy transport in the electronic subsystem via 
the heat diffusion equation
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• Electron temperature (Te) varies locally.

• Te is taken as an average in a spatial cell.

• Heat eqn is discretized and solved numerically.

• User supplies initial Te values.

• LAMMPS keeps track of time evolution of Tevalues.

• Ce and κe are user-specified constants.

• The T values and “coupling constants” (gp and gs) vary spatially and temporally.
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Link between the electronic and atomic sub-systems

Energy loss of the atomic sub-system:

Energy gain of the electronic sub-system:

Equate the two: And solve for the coupling “constants”:

Define the atomic T values:
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Implementation in LAMMPS

• Generalized for use with multiple atom types.

• Te varies in time and in all three spatial dimensions.

• User supplies physical constants and initial Te values.

• Reasonable energy conservation achieved.

• Models thermal conductivity and finite heat capacity 
of the electron subsystem.

Phillips and Crozier, J. Chem. Phys. 2009, 131, 074701
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TTM input parameters  (fix ttm)

• Electron specific heat*
• Electron density*
• Electron thermal conductivity
• Electron-ion interaction coefficient, γp*
• Electron stopping friction coefficient, γs (SRIM tables, 

www.srim.org)
• Electron stopping critical velocity, v0

• Number of electronic grid points
• Initial electron temperature

* DFT calculations can be used to estimate these values

http://www.srim.org/�
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Example: cascade damage simulation
►Gadolinium pyrochlore waste form (Gd2Zr2O7)
►Large initial velocity (10 keV) imparted to the primary 

knock-on atom (PKA) to simulate a radiation recoil event

10.8 Å 162 Å

1 unit cell, 88 atoms 15 x 15 x 15 supercell, 297k atoms
(only Gd atoms shown)

Ismail et al, J. Phys. Condens. Matter., submitted
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Non-TTM results: Gd defects

Blue = PKA (U)

Red = defect Gd
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Results of defect analysis
Averages from 20 random PKA directions
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PKA (U atom) displacement results

149 ± 30 Å

109 ± 17 Å

66 ± 7 Å

45 ± 5 Å
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