ReaxFF in LAMMPS

New LAMMPS features briefs LAMMPS Users' Workshop @ CSRI Thursday, Feb 25, 2010, 11:15 a.m.

Aidan Thompson
Sandia National Labs

The ReaxFF Interatomic Potential

Developed by Adri van Duin:

van Duin ACT, Dasgupta S, Lorant F, Goddard WA, *J. Phys. Chem A.* 105 9396 (2001) (183 citations up to Feb 2010)

Describes bond formation and charge transfer in condensed phases, especially organics

Bonded interactions generated on-the-fly, based on distance-dependent bondorder functions.

Bond-orders adjusted to compensate for atomic over/under-coordination

Atom charges computed using electro-negativity equalization i.e. minimizing quadratic function in *N* charges (Coulombic plus ionization energies)

$$E_{System} = E_{bond} + E_{over/under} + E_{lp} + E_{pen} + E_{coa} + E_{hb} + E_{tors} + E_{conj} + E_{val} + E_{vdW} + E_{Coul}$$
$$= E(bond-order) + E(non-bond) + E(charge equilibration)$$

ReaxFF MD Codes

reac.f (van Duin)

- Serial FORTRAN code written
- integrates parameter optimization and MD
- Not optimized for CPU or memory
- N <10⁴

GRASP (Thompson)

- Spatial parallel C++
- Uses optimized versions of reac.f subroutines to bond-orders, energies.
- Charge equilibration using sparse parallel CG method.
- Exactly matches reac.f.
- N ~ 10^7

USC Code (Nakano, USC)

- Spatial parallel.
- N ~ 10^9

ParallelReax (Aktulga, PurdueU)

- Spatial Parallel C
- Dynamic memory. Fast.
- Carefully validated against reac.f
- N ~ 10^7

LAMMPS (Thompson and Cho) Similar to GRASP implementation **LAMMPS** II (Aktulga): in progress

ReaxFF in LAMMPS

Command Syntax

(1 ReaxFF index for each LAMMPS type)

Potential Files

ffield.reax.mattsson: general-purpose hydrocarbon parameterization

Mattsson *et. al,* "First-Principles and Classical Molecular Dynamics Simulation of Shocked Polymers," *Phys. Rev. B* 81 054103 (2010).

ffield.reax.budzien: PETN

Budzien, Thompson, and Zybin, "Reactive Molecular Dynamics Simulations of Shock Through a Single Crystal of Pentaerythritol Tetranitrate," *J. Phys. Chem. B* 113 13142 (2009).

ffield.reax.rdx: nitramines (RDX/HMX/TATB/PETN)

Zhang, van Duin, Zybin, and Goddard, "Thermal Decomposition of Hydrazines from Reactive Dynamics Using the ReaxFF Reactive Force Field," *J. Phys. Chem. A* 113 10770 (2009).

ffield.reax.cho: c/h/o combustion force field November 2006

Chenoweth, van Duin, and Goddard, "ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation," *J. Phys. Chem. A* 112 1040 (2008)

We hope to add Water, SiO2, and CNT to this list soon.

Parallel Scaling of ReaxFF in GRASP/LAMMPS

4241

512

2826

768

Non-Bond, Bond-Order and Bonding

- Computationally expensive
- Short-Range
- Local Communication
- Load-balancing issues

7 Grasp 6 Perfect

2121

on peace of the second second

1024

Jade (ERDC): Cray XT-4

(2152 quad-core Opteron, 1.8 Ghz)
Scaling: Grasp vs. perfect speed-up (2.172 x 10⁶ atoms)

1305

1664

1060

2048

Average number of atoms per processor

Charge Equilibration

- Distributed CG implementation
- Implemented distributed sparse matrix multiply
- Low computation and communication cost
- Small part of overall force time up to N ~ 10⁶
- · Requires global communication
- Could be a problem for larger N

Number of processors

530

4096

Atomistic Energetic Modeling

"Reactive Molecular Dynamics Simulations of Shock Through a Single Crystal of Pentaerythritol Tetranitrate," Joanne L. Budzien, Aidan P. Thompson, and Sergey Zybin, *J. Phys. Chem. B* 113 13142 (2009).

0.1

HNO,

20 30 Time (ps)

PETN Orientation-dependent Sensitivity

Zybin, Goddard, Xu, van Duin and Thompson, *Appl. Phys. Lett.* (2010)

