OpenKIM Tutorial

Ellad B. Tadmor, Ryan S. Elliott

Department of Aerospace Engineering and Mechanics

University of Minnesota

Key Collaborators:

- Daniel S. Karls (U. Minnesota)
- Yaser Afshar (U. Minnesota)
- Noam Bernstein (NRL)
- George Karypis (U. Minnesota)
- Yonatan Kurniawan (BYU)
- Mark Transtrum (BYU)
- Mingian Wen (LBL)

NSF CDI (2009-2014); NSF CDS&E (2014-2018); NSF CMMT (2019-)

Outline OpenKIM Tutorial

- LAMMPS Simulation: Nanowire Extension
- OpenKIM Framework and LAMMPS
- Potential Selection Exercise
- Obtaining Properties through OpenKIM Web Queries
- Unit Conversion Handling

Outline OpenKIM Tutorial

- LAMMPS Simulation: Nanowire Extension
 - Setting up and running the simulation
 - Results
- OpenKIM Framework and LAMMPS
- Potential Selection Exercise
- Obtaining Properties through OpenKIM Web Queries
- Summary

Nanowire Extension Simulation

- Aluminum in the face-centered cubic (fcc) structure
- Stress-strain curve obtained using the Embedded Atom Method (EAM) potential for Al due to Zhu et al., Acta Materialia, 49:4005, 2001.
- Periodic boundary conditions along x-direction; free surfaces along y and z-directions
- Imperfection introduced by removing one atom to localize deformation
- Displacement boundary-conditions applied by stretching cell in x-direction
- Stretching to 100% strain in increments of 1%

Aluminum nanowire --- static uniaxial tension along x-direction # Based on an example by Mark Tschopp and Nathan Rhodes available at: # https://icme.hpc.msstate.edu/mediawiki/index.php/LAMMPS_Fracture # # Authors: Daniel S. Karls, Ellad B. Tadmor # Last revision: 8/7/2019 # Initialization units metal dimension 3 boundary p p p atom_style atomic # Simulation variables variable latticetype string "fcc" # Other options: "fcc", "bcc", "sc"` variable a0 equal 4.05 # Equilibrium lattice constant # Nanowire length in x-direction (in unit cells) variable wire_len_x equal 10 variable wire_len_y equal 2

Nanowire length in y-direction (in unit cells)

- # Nanowire length in z-direction (in unit cells)
- variable strain_increment equal 0.01 # Increment of strain relative to ref config
 - # at each load step
- variable number_load_steps equal 100 # Number of load steps

Derived/other variables variable vacuum_pad equal 5 # Set the vacuum along the y and z directions variable box_min_y equal -\${vacuum_pad} variable box_max_y equal \${wire_len_y}+\${vacuum_pad} variable box_min_z equal -\${vacuum_pad} variable box_max_z equal \${wire_len_z}+\${vacuum_pad} variable box_yz_area equal (\${box_max_y}-\${box_min_y})*(\${box_max_z}-\${box_min_z})*\${a0}^2 variable wire_yz_area equal \${wire_len_y}*\${wire_len_z}*\${a0}^2

variable wire_len_z equal 2

Create imperfection variable atomx equal floor(\${wire_len_x}/2) variable atomy equal 0.0 variable atomz equal 0.0 variable atomrad equal 0.1 region void sphere \${atomx} \${atomy} \${atomz} \${atomrad} delete_atoms region void

Set mass to dummy value (not used in static minimization)
mass 1 1.0

Specify potential
pair_style eam/alloy
pair_coeff * * Al_zhou.eam.alloy Al

EII

First, perform a static minimization with respect to all atomic positions # under the condition that the box size relax along the axial (x) direction in # order to achieve zero stress along this dimension. thermo 10 thermo_style custom step lx ly lz press pxx pyy pzz pe min_style cg fix 1 all box/relax x 0.0 fixedpoint 0 0 0 minimize 1.0e-16 1.0e-16 5000 10000 unfix 1

Record stress
variable total_strain equal 0.0
variable pressf1 equal -pxx
variable pressf equal \${pressf1}*\${box_yz_area}/\${wire_yz_area}
print "STEP 0; strain: \${total_strain}; engineering stress (Bar): \${pressf}"
print "\${total_strain} \${pressf}" file out_stress-strain_lmp.dat

Dump the relaxed reference configuration prior to straining dump dmp1 all atom 1 out_config_lmp.dump dump_modify dmp1 scale no run 0 undump dmp1

Define looping variables
variable n loop \${number_load_steps}
label loop

Compute stretch factor relative to the deformed length needed to # obtain a strain increment of `strain_increment` relative to the # reference configuration (i.e. engineering or Lagrangian strain) variable stretch_factor equal &

1.0+\${strain_increment}/(1+\${n}*\${strain_increment})

Calculate total strain for this step
variable total_strain equal \${n}*\${strain_increment}

Stretch box
change_box all x scale \${stretch_factor} remap

Minimize positions of atoms within cell
minimize 1.0e-10 1.0e-10 1000 10000

Print out stress
variable pressf1 equal -pxx
variable pressf equal \${pressf1}*\${box_yz_area}/\${wire_yz_area}
print "STEP \${n}; strain: \${total_strain}; engineering stress (Bar): \${pressf}"
print "\${total_strain} \${pressf}" append out_stress-strain_lmp.dat

Dump relaxed strained configration dump dmp1 all atom 1 out_config_lmp.dump dump_modify dmp1 append yes scale no run 0 undump dmp1

next n jump SELF loop

print "Simulation complete"

EXERCISE: Run the Simulation

• **Goal:** Run the nanowire extension simulation

The LAMMPS input script is on your usb drive as: in.kim.zhoueam.lmp.nanowire

Execute the script on your machine:

\$ cd /home/lammps/KIM-API
\$ lmp_serial -in in.kim.zhoueam.lmp.nanowire > out.kim.zhoueam.lmp.nanowire

This will create the following files:

- out_config_lmp.dump (contains configurations at the end of each load step)
- out_stress-strain_lmp.dat (contains stress (bars) vs strain (percent) data)

Plot the stress-strain curve using gnuplot, grace or matplotlib. For example:

\$ gnuplot
plot "out_stress-strain_lmp.dat" with lines

How do we know if this is the "correct" potential for this simulation? How does the choice of potential affect the results?

Outline OpenKIM Tutorial

- LAMMPS Simulation: Nanowire Extension
 - Setting up and running the simulation
 - Results
- OpenKIM Framework and LAMMPS
 - What is OpenKIM?
 - Interatomic potentials on OpenKIM.org
 - Running LAMMPS with OpenKIM potentials
- Potential Selection Exercise
- Obtaining Properties through OpenKIM Web Queries
- Summary

Open Knowledegebase of Interatomic Models

OpenKIM by the numbers

- The OpenKIM repository currently contains:
 - 390 interatomic potentials
 - 2600 property tests
 - 9 verification checks
 - 75,000 reference data items
- OpenKIM has 560 members from 43 countries
- The OpenKIM website (<u>openkim.org</u>) is visited by 500-1000 researchers per month and KIM content is downloaded 10,000 per month
- The OpenKIM Directory of Model Developers (<u>openkim.org/model-developer-directory/</u>) includes 64 groups involved in interatomic potential development.

OpenKIM is funded by the NSF

OpenKIM is a member of DateCite

https://openkim.org

PIs: Ellad Tadmor, Ryan Elliott, George Karypis, Mark Transtrum

Advisory Board: Pietro Asinari, Laura Bartolo, Michael Baskes, Betsy Rice, Sadasivan Shankar, Aidan Thompson

Cu

Extended KIM ID	Title
EAM_Dynamo_AcklandTichyVitek_1987_CuMO_179025990738_005	Finnis-Sinclair potential (LAMMPS cubic hermite tabulation) for Cu developed by Ackland et al. (1987) v005
EAM_Dynamo_AcklandTichyVitek_1987v2_CuMO_762798677854_000	Finnis-Sinclair potential (LAMMPS cubic hermite tabulation) for Cu developed by Ackland et al. (1987), version 2 refitted for radiation studies v000
EAM_Dynamo_AcklandVitek_1990_CuMO_642748370624_000	Finnis-Sinclair potential (LAMMPS cubic hermite tabulation) for Cu developed by Ackland and Vitek (1990) v000
EAM_Dynamo_AdamsFoiles_1989Universal6_CuMO_145873824897_000	EAM potential (LAMMPS cubic hermite tabulation) for Cu (Universal6) developed by Adams and Foiles (1989) v000

- •
- •

•	
EAM_Dynamo_ZhouWadleyJohnson_2001_CuTaMO_547744193826_000	EAM potential (LAMMPS cubic hermite tabulation) for the Cu-Ta system developed by Zhou, Wadley and Johnson (2001) v000
FAM Dyname Zhavilliadiay labraan 2001 Cu. MO 280822813353_000	EAM potential (LAMMPS cubic hermite tabulation) for Cu developed by Zhou, Wadley and Johnson (2001) v000
EAM_NN_Johnson_1988_CuMO_887933271505_002	EAM Potential (analytical nearest-neighbor) for Cu developed by Johnson (1988) v002
EM1_Asap_MetalGlass_BalleySchlotzJacobsen_2004_CuMgMO_228059236215_001	EMT potential for Cu-Mg metallic glasses developed by Bailey, Schiotz, and Jacobsen (2004) v000
EMT_Asap_MetalGlass_CuMgZrMO_655725647552_002	Effective Medium Theory potential for CuMg and CuZr alloys, in particular metallic glasses.
EMT_Asap_MetalGlass_PaduraruKenoufiBailey_2007_CuZrMO_987541074959_001	EMT potential for Cu-Zr metallic glasses developed by Paduraru et al. (2007) v000
EMT_Asap_Standard_JacobsenStoltzeNorskov_1996_AlAgAuCuNiPdPtMO_115316750986_001	EMT potential for Al, Ni, Cu, Pd, Ag, Pt and Au developed by Jacobsen, Stoltze, and Norskov (1996) v000
EMT_Asap_Standard_JacobsenStoltzeNorskov_1996_CuMO_396616545191_001	EMT potential for Cu developed by Jacobsen, Stoltze, and Norskov (1996) v000
EMT_Asap_Standard_Jacobsen_Stoltze_Norskov_AlAgAuCuNiPdPtMO_118428466217_002	Standard Effective Medium Theory potential for face-centered cubic metals as implemented in ASE/Asap.
LJ_ElliottAkerson_2015_UniversalMO_959249795837_003	Efficient 'universal' shifted Lennard-Jones model for all KIM API supported species developed by Elliott and Akerson (2015) v003
MEAM_2NN_Fe_to_GaMO_145522277939_001	Model parameterization of 2NN MEAM model
Morse_Shifted_GirifalcoWeizer_1959HighCutoff_CuMO_151002396060_002	Morse potential (shifted) for Cu by Girifalco and Weizer (1959) using a high-accuracy cutoff distance v002
Morse_Shifted_GirifalcoWeizer_1959LowCutoff_CuMO_673777079812_002	Morse potential (shifted) for Cu by Girifalco and Weizer (1959) using a low-accuracy cutoff distance v002
Morse_Shifted_GirifalcoWeizer_1959MedCutoff_CuMO_173787283511_002	Morse potential (shifted) for Cu by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance v002
Pair_Morse_Modified_MacDonaldMacDonald_CuMO_034823476734_000	Modified Morse pair potential for copper due to MacDonald and MacDonald

EAM_NN_Johnson_1988_Cu__MO_887933271505_002

Title 🕑	EAM Potential (analytical nearest-neighbor) for Cu developed by Johnson (1988) v002
Description O	Analytical nearest-neighbor EAM model for Cu by Johnson
Species 🛛	Cu
Contributor	Ryan
Maintainer	Ryan
Author	Ryan S. Elliott
Publication Year	2018
Item Citation	This Model originally published in [1] is archived in OpenKIM [2-4].
	[1] Johnson RA. Analytic nearest-neighbor model for fcc metals. Physical Review B. 1988Mar;37(8):3924–31. doi:10.1103/PhysRevB.37.3924
	[2] Elliott RS. EAM Potential (analytical nearest-neighbor) for Cu developed by Johnson (1988) v002. OpenKIM; 2018. doi:10.25950/3ccd9f3b 2
	[3] Tadmor EB, Elliott RS, Sethna JP, Miller RE, Becker CA. The potential of atomistic simulations and the Knowledgebase of Interatomic Models. JOM. 2011;63(7):17. doi:10.1007/s11837-011-0102-6
	[4] Elliott RS, Tadmor EB. Knowledgebase of Interatomic Models (KIM) Application Programming Interface (API). OpenKIM; 2011. doi:10.25950/ff8f563a
	Click here to download the above citation in BibTeX format.
Short KIM ID 😡	MO_887933271505_002
Extended KIM ID 😡	EAM_NN_Johnson_1988_CuMO_887933271505_002
DOI	10.25950/3ccd9f3b https://doi.org/10.25950/3ccd9f3b https://search.datacite.org/works/10.25950/3ccd9f3b
KIM Item Type 😡	Portable Model
KIM API Version	2.0
Programming Language(s) 0	100.00% C
Previous Version	EAM_NN_Johnson_1988_CuMO_887933271505_001

- Further down the model page for
- EAM_NN_Johnson_1988_Cu__MO_887933271505_002

^o Verification Check Dashboard

(Click here to learn more about Verification Checks)

Grade	Name	Category	Brief Description	Full Results	Aux File(s)
Pø	vc-species- supported-as- stated	mandatory	The model supports all species it claims to support; see full description.	Results	Files
Pø	vc-periodicity- support	mandatory	Periodic boundary conditions are handled correctly; see full description.	Results	Files
Pø	vc-permutation- symmetry	mandatory	Total energy and forces are unchanged when swapping atoms of the same species; see full description.	Results	Files
Aø	vc-forces- numerical- derivative	consistency	Forces computed by the model agree with numerical derivatives of the energy; see full description.	Results	Files
Fø	vc-dimer- continuity-c1	informational	The energy versus separation relation of a pair of atoms is C1 continuous (i.e. the function and its first derivative are continuous); see full description.	Results	Files
Pø	vc-objectivity	informational	Total energy is unchanged and forces transform correctly under rigid-body translation and rotation; see full description.	Results	Files
Pø	vc-inversion- symmetry	informational	Total energy is unchanged and forces change sign when inverting a configuration through the origin; see full description.	Results	Files
Pø	vc-memory-leak	informational	The model code does not have memory leaks (i.e. it releases all allocated memory at the end); see full description.	Results	Files
Pø	vc-thread-safe	mandatory	The model returns the same energy and forces when computed in serial and when using parallel threads for a set of configurations. Note that this is not a guarantee of thread safety; see full description.	Results	Files

- Further down the model page for
- EAM_NN_Johnson_1988_Cu__MO_887933271505_002

Cubic Crystal Basic Properties Table

Species: Cu

	Model	Lattice Constant [Å] ⊘	Cohesive Energy [eV]@	c11 [GPa] 	c12 [GPa]Ø	c44 [GPa] ⊘	
bcc √Expand	EAM_NN_Johnson _1988_CuMO_8 87933271505_002	2.85939610749000 03	3.60638315770475 47	146.260887382000 02	137.952181442	91.9367817649000 2	
diamond Expand	EAM_NN_Johnson _1988_CuMO_8 87933271505_002	5.45042160153000 1	2.42418324907400 16	N/A	N/A	N/A	
fcc <u>ZExpand</u>	EAM_NN_Johnson _1988_CuMO_8 87933271505_002	3.61472985148	3.54000012331236 8	184.172808464	115.324864335	68.8519693905	
<u>SC</u> <mark> ✓Collapse</mark>	EAM_NN_Johnson _1988_CuMO_8 87933271505_002	2.37244981527000 04	3.26347357796984 1	270.847253148	24.4996165814	-17.5854303931	
	EAM_Dynamo_Ackl andTichyVitek_198 7_CuMO_17902 5990738_005	2.41274794936	2.93498774633736 6	296.901843605	90.8334172056000 1	54.1961445689	
	FAM Dynamo Ackl	2 39571615309	2 94757703382590	186 096823759000	61 7775700379000	24 2576222484000	

- Further down the model page for
- EAM_NN_Johnson_1988_Cu__MO_887933271505_002

° Tests

ElasticConstantsCubic	cTD_011862047401_004		Full	results page.
Computes the cubic e estimate of the error a	elastic constants for some common crystal types (for associated with the numerical differentiation perform	cc, bcc, sc) by calculated is reported.	ating the hessian of the energy densit	y with respect to strain. An
Test		Test Results	Link to Test Results page	Benchmark time Ø
ElasticConstantsCubic_bcc	c_CuTE_091603841600_004	✓ expand	Q view	2602
ElasticConstantsCubic_fcc	_CuTE_188557531340_004	<pre> expand</pre>	Q view	3665
lasticConstantsCubic_sc_	CuTE_319353354686_004	✓ expand	Q view	3075
• • •	Expand a	n property :	<mark>synopsis.</mark>	
•	Usertime muliplied by the used (approximately) to independently of the arc	he Whetsto compare t chitecture o	one Benchmark.This the performance of on which the test wa	number can be different models as run.

- Further down the model page for
- EAM_NN_Johnson_1988_Cu__MO_887933271505_002

° Tests

ElasticConstantsCubic_TD_011862047401_004

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.

Test	Test Results	Link to Test Results page	Benchmark time 😡	
ElasticConstantsCubic_bcc_CuTE_091603841600_004	✓ expand	Q view	2602	
ElasticConstantsCubic_fcc_CuTE_188557531340_004	✓ expand	Q view	3665	
ElasticConstantsCubic_sc_CuTE_319353354686_004	* collapse	Q view	3079	
instance-id: 1 Isothermal elastic constants for a cubic crystal at constant temperature and stress (For more information, see the property definition elastic-constants-isothermal-cubic-crystal-npt) Crystal type = ["sc*] a = 2.37244981527 angstrom Species = ["Cu"] Basis atom coordinates = [[0.0 0.0 0.0]]				
Temperature = 0 K Cauchy stress = [0 0 0 0 0 0] GPa				
c11 = 270.8472531475441 GPa c12 = 24.49961658139509 GPa c44 = -17.585430393063543 GPa Elastic co indicatin	Elastic constants (note that c44 is negative indicating the sc structure is unstable).			

- Further down the model page for
- EAM_NN_Johnson_1988_Cu__MO_887933271505_002

^o Visualizers (in-page)

Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Click on any thumbnail to get a full size image.

- Further down the model page for
- EAM_NN_Johnson_1988_Cu__MO_887933271505_002

^o Wiki

Description

This Model implements the potential developed by R.A. Johnson for fcc metals as described in the reference above (see Source Citations). In particular, this model is applied to copper (Cu).

Parameters

Symbols (matching the reference):

 $r_e, \phi_e, \gamma, f_e, \beta, E_c, \alpha, \rho_e.$

Corresponding variables in code:

JEAM_R0, JEAM_PHI0, JEAM_GAM, JEAM_G0, JEAM_BET, JEAM_EC, JEAM_ALF, JEAM_RHO0, where the prefix JEAM emphasizes the fact that each variable corresponds to the "Johnson Embedded Atom Potential".

Warning: The model uses other parameters DIM, SPECCODE and MODEL_CUTOFF denoting the dimensionality of the space (3 by default), the number of species (1, by default) and the cut-off radius (3.5 Angstrom by default), respectively. Default values have been hardcoded and, in principle, they should not be modified.

Details

The total potential energy of a system of N atoms is assumed to take the form $E = \sum_{i=1}^{N} E_i$, such that

$$E_i = \sum_{i=1}^{N} \left[F(\rho_i) + \frac{1}{2} \sum_{j=1}^{m} \phi(r_{ij}) \right],$$

and

where E_i denotes the energy per atom i, $F(\rho_i)$ is the embedding function contribution, $\frac{1}{2} \sum_{j=1}^{m} \phi(r_{ij})$ is the two-body contribution to the energy, ρ_i stands for the electron density at atom i, and $f(r_{ij})$ is the atomic electron density of atom j as a function of the distance from its center r_{ij} , while j is one of the m neighbors of the atom i.

 $\rho_i = \sum_{i=1}^m f(r_{ij}),$

•••

Running LAMMPS with KIM Models

- Only two changes are needed to the LAMMPS script to run with a KIM model:
 - I. Replace the units command with a kim_init command:

2. Replace the pair_style and pair_coeff commands with a kim_interactions command:

Outline OpenKIM Tutorial

- LAMMPS Simulation: Nanowire Extension
 - Setting up and running the simulation
 - Results
- OpenKIM Framework and LAMMPS
 - What is OpenKIM?
 - Interatomic potentials on OpenKIM.org
 - Running LAMMPS with OpenKIM potentials
- Potential Selection Exercise
 - Select a suitable interatomic potential from OpenKIM.org
 - Rerun simulation with new potential
- Obtaining Properties through OpenKIM Web Queries
- Summary

EXERCISE: Potential Selection using OpenKIM

• **Goal:** Select a suitable interatomic potential

Material properties that are important for the potential to get right for a tensile test:

Property	Symbol [units]	DFT value (0 K)
Lattice constant	a0 [Å]	4.049 [1] Vitos et al., Surf. Sci.,
Elastic constants	C11 [GPa]	108.2 [2] Bercegeay et al., Phys. Rev.
	C12 [GPa]	56.6 [2]
	C44 [GPa]	30.5 [2]
Surface energies	γ ₁₀₀ [eV/Ų]	0.0748 [1]
	γ ₁₁₀ [eV/Ų]	0.0793 [1]
	γ111 [eV/Ų]	0.0841 [1]
Unstable stacking energy	γ _{us} [eV/Ų]	0.010 [3] Kibey et al., Acta Mater,

Look through the AI potentials on <u>openkim.org</u>, select one that you think is best.

Raise your hand when you are done.

Comparison of Potentials - Errors in %

SLIDE REMOVED

EXERCISE: Potential Selection using OpenKIM

Goal: Run the nanowire extension simulation with the selected potential

Step I: Copy the input script to a new file and save Zhou plot files:

\$ cp in.kim.zhoueam.lmp.nanowire in.kim

\$ mv out_stress-strain_lmp.dat out_stress-strain_lmp_zhou.dat

\$ mv out_config_lmp.dump out_config_lmp_zhou.dump

<u>Step 2</u>: Edit the new script to use the KIM model you selected.

\$ nano in.kim

Step 3: Run simulation

\$ lmp_serial -in in.kim > out.kim

<u>Step 4</u>: Plot results, comparing the new potential with Zhou EAM. In gnuplot:

plot "out_stress-strain_lmp.dat" with lines, "out_stress-strain_lmp_zhou.dat"
with lines

Raise your hand when you are done.

Results with Other Potentials

SLIDE REMOVED

Citation Information for KIM Model

When running LAMMPS with a KIM model, citation information in BibTex format is contained in the log.cite file:

This LAMMPS simulation made specific use of work described in the following references. See http://lammps.sandia.gov/cite.html for details.

@Comment

```
\documentclass{article}
\usepackage{url}
\begin{document}
This Model originally published in \cite{MO_049243498555_000a, MO_049243498555_000b} is archived in
OpenKIM~\cite{MO_049243498555_000, MD_120291908751_005, tadmor:elliott:2011, elliott:tadmor:2011}.
\biblioaraphystyle{vancouver}
\bibliography{kimcite-M0_049243498555_000.bib}
\end{document}
@Article{M0_049243498555_000a,
  author = {Zhou, X.W. and Wadley, H.N.G. and Johnson, R.A. and Larson, D.J. and Tabat, N. and Cerezo, A.
and Petford-Long, A.K. and Smith, G.D.W. and Clifton, P.H. and Martens, R.L. and Kelly, T.F.},
  doi = \{10.1016/S1359-6454(01)00287-7\},\
 journal = {Acta Materialia},
 number = \{19\},
 pages = \{4005 - 4015\},\
 title = {Atomic scale structure of sputtered metal multilayers},
 volume = \{49\},
 year = \{2001\},
```

Citation Information for KIM Model

When running LAMMPS with a KIM model, citation information in BibTeX format is contained in an auto-generated log.cite file:

@M1SC{M0_04924	-3498555_000,
uutnor +i+lo	= {Ellaa laamor}, {}EAM\ notential ({ AMMPS\ cubic bermite tabulation) for {A\l developed by {7\bou }W\
adlev and {J}c	$\gamma = \{\{2, M\}\} \text{ potential } \{\{2, M\}\} \} \text{ cubic hermitic tabatation for } \{A\} \text{ acceloped by } \{2\} \text{ hou}, \{M\}\}$
doi	= {10.25950/84f935c7},
nowpublisned	ı = {Upenкım, \uri{ <u>nttps://aoi.org/10.25950/84†935С/}}</u> ,
keywords	= {OpenKIM, Model, MO_049243498555_000},
publisher	= {OpenKIM},
year	= 2018,
}	
@Misc{MD_12029	01908751_005,
author	= {Ryan S. Elliott},
title	= {{EAM} {M}odel {D}river for tabulated potentials with cubic {H}ermite spline interpolation
as used in {LA	MMPS} v005}.
doi	= {10.25950/68defa36},
howpublished	$I = \{0 \text{penKIM}, \ url\{\frac{https://doi.org/10.25950/84f935c7\}}{,}$
Keywords	= {UpenKIM, Model Driver, MD_120291908751_005},
year	$= \{0 \mid 0 \in \mathbb{N}\},\$
3	- 2010,
A. C. Martin	

Outline OpenKIM Tutorial

- LAMMPS Simulation: Nanowire Extension
 - Setting up and running the simulation
 - Results
- OpenKIM Framework and LAMMPS
 - What is OpenKIM?
 - Interatomic potentials on OpenKIM.org
 - Running LAMMPS with OpenKIM potentials
- Potential Selection Exercise
 - Select a suitable interatomic potential from OpenKIM.org
 - Rerun simulation with new potential
- Obtaining Properties through OpenKIM Web Queries
 - LAMMPS kim_query mechanism
 - Query exercise
- Summary

Obtaining Properties through OpenKIM Web Queries

In the simulation that you ran, a hard-wired lattice constant was used:

But actually each interatomic potential predicts a different equilibrium lattice constant:

EAM_CubicNaturalSpline_ErcolessiAdams_1994_AIMO_800509458712_002	4.032
EAM_Dynamo_AngeloMoodyBaskes_1995_NiAlHMO_418978237058_005	4.05
EAM_Dynamo_CaiYe_1996_AlCu_MO_942551040047_005	4.05
EAM_Dynamo_ErcolessiAdams_1994_AIMO_123629422045_005	4.032
EAM_Dynamo_FarkasJones_1996_NbTiAIMO_042691367780_000	3.869
EAM_Dynamo_JacobsenNorskovPuska_1987_AIMO_411692133366_000	3.988

You can do a simulation to determine a0, look it up and substitute into script, or ...

Obtaining Properties through OpenKIM Web Queries

• Using OpenKIM queries within a LAMMPS script:

The kim_query command performs a web query to <u>openkim.org</u> and retrieves

- For the model specified in kim_init (EAM_Dynami_ZhouWadley...)
- The requested query (get_lattice_constant_cubic) with parameters
 - crystal = ["fcc"]
 - species = ["Al"]
 - units = ["angstrom"]
- Result placed in the variable a0

For the Zhou et al. model this will result in an fcc lattice with a0=4.081654928624631 Å

EXERCISE: Rerun Simulation with Query

Goal: Run the nanowire extension simulation with the selected potential
 <u>Step I</u>: Copy your input script to a new file and save your plot files:

```
$ cp in.kim in_query.kim
$ mv out_stress-strain_lmp.dat out_stress-strain_lmp_my.dat
$ mv out_config_lmp.dump out_config_lmp_my.dump
```

<u>Step 2</u>: Edit the new script and replace the "variable a0" command with a kim_query:

\$ nano in_query.kim

Step 3: Run simulation

\$ lmp_serial -in in_query.kim > out_query.kim

<u>Step 4</u>: Plot results, comparing the new results with the previous results. In gnuplot:

plot "out_stress-strain_lmp.dat" with lines, "out_stress-strain_lmp_my.dat"
with lines

Raise your hand when you are done.

SLIDE REMOVED

Outline OpenKIM Tutorial

- LAMMPS Simulation: Nanowire Extension
 - Setting up and running the simulation
 - Results
- OpenKIM Framework and LAMMPS
 - What is OpenKIM?
 - Interatomic potentials on OpenKIM.org
 - Running LAMMPS with OpenKIM potentials
- Potential Selection Exercise
 - Select a suitable interatomic potential from OpenKIM.org
 - Rerun simulation with new potential
- Obtaining Properties through OpenKIM Web Queries
 - LAMMPS kim_query mechanism
 - Query exercise
- Summary

Summary

- Simulation results are strongly affected by the choice of interatomic potential.
- OpenKIM archives many interatomic potentials (models) on <u>openkim.org</u>.
 Each KIM model has the features:
 - Archival storage with provenance control
 - A unique KIM ID and a DOI that can be cited in publications
 - Results for property predictions and verification checks on coding integrity
 - Can be downloaded and used directly with LAMMPS
- KIM models are integrated with LAMMPS:
 - A command is provided to install KIM models. (Automatic when installing from binary)
 - Usage is simple:

Web queries can be performed from within LAMMPS scripts to get properties:

kim_query a0 get_lattice_constant_cubic crystal=["fcc"] species=["Al"] units=["angstrom"]

• A mechanism for unit conversion is provided.

OpenKIM.org

https://openkim.org