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2 I The Problem Statement

* Why 1s the shock initiation to detonation transition a ‘multi-scale’ problem?

*  What scientific understanding or engineering design is obstructed by this problem?
(condensed phase chemistry, non-equilibrinm processes, inverse performance design, etc.)

* Are the approximations in our modeling & simulation tools too prohibitive?

Remember that these approximations are most often computational conveniences.

*  What do Sandia’s shock mod/sim capabilities look like? What are the goals?



3 I Shock Waves and Energetic Materials

Lets talk critical length and timescales

*  Macro-scale Detonation *  Shock wave rise, width *  Chemical Reactions
Run to detonation ~mm, ~us Particle, shock and detonation Unit cell of EM ~1nm
velocities ~um/ns
Grain/particle sizes ~10-100um Period of CH stretch ~10fs

Defect sizes ~10nm-1um
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Shock Initiation of Explosives at Sandia
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HNS crystal structure
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Microstructural Analysis
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s I Microstructure Matters

7.7+ % 4] HNS - Real Microstructure
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C. D. Yarrington, R. R. Wixom, D. L.
Damm, 2012 JANNAF Propulsion
Systems Hazards Subcommittee
Meeting, Monterey, CA.

* Shock wave dissipates at defects, lost as heat

* Chemical reactions produce more heat and

over pressure due to expanding gasses

Pore Size Distribution
()]

*  What defects lead to ignition?

10-5 107 10 10
Pore Radius, a, (m)

Length (nm) and time (ps) scales make
experiments extremely challenging

Need a model to capture both mechanical and
chemical response




6 | Sandia Mesoscale Modelling of Explosives

Continuum Properties
Propagated Down:

* ‘Critical’ local microstructure
features

* Evaluate measures of
sensitivity

* Integration with new
experimental diagnostics
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~Avogadro's Mesh
number Resolution

~1x10° to Domain
1x10? atoms Scahng

Quantum Methods

Atomistic Properties
Propagated Up:

* Global reaction kinetics
* Improved strength
models

* Effects of anisotropy in
strength, EOS



Sandia Mesoscale Modelling of Explosives
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Atomistic Properties
Propagated Up:

* Global reaction kinetics

* Improved strength

15108 1o models

1x10° atoms * Effects of anisotropy in

strength, EOS
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|dentifying Vastly Different Approximations
Time
ms
*  What to do for problems that
Ko are not well posed within any
one tool?
ns
*  How can we preserve accuracy
of predictions where multiple
b key approximations are made?
S

Length

pm nm um mm

l Electronic Atomic Continuum
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Strength Models in Hydrodynamics (the approximation)

VISCOPLASTIC
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Moving Beyond the MD Scale

Pore Collapse Rate (A/Ag*Us/D)
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11 I Much Better Mechanical Agreement

Up =
0.75 km/s

CTH Hydro CTH SGL MD ReaxFF

Temperature

Normalized
Plastic Strain

CTH now predicts:
* A much more detailed strain field, viscoplastic deformation
* Correlation between temperature and regions of high strain




12 | Practical Effects of Strength Models

Temperature (K)
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Hydrodynamic Current SGL model
* Higher average

* Higher local temperatures

temperatures * Similar “collapse” times

* More dispersion
ot leading shock

* Microstructure generated using experimental pore
size distribution

* Piston impact at 0.6 km/s
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13 I What are we missing!?

Crystallographic Orientation Reaction Kinetic Terms

* Single crystal shock response is clearly an * CTH burn models are parameterized to
approximation at the mesoscale, grain boundaries experiments with limited data, reactive MD can fill
and orientation effects need to be considered. this gap by providing burn rates: A= f(4, P, T)

* Isa full crystal plasticity model needed? *  The challenge is accessible timescales, not length

scale as in pore collapse
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Continuum Properties
Propagated Down:

Sandia Mesoscale Modelling of Explosives
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~Avogadro's Mesh
number Resolution

‘Critical’ local microstructure
features

Evaluate measures of
sensitivity

~1x10°% to Domain
1x10? atoms Scaling
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Modeling Ignition and Growth

Beyond Heuristics

Energy content is a matter of chemical
composition, energy release rate is a function of
the microstructure

Quantifying sensitivity has been an outstanding
problem

Relative measures at best TATB<RDX<TATP etc.

Pressed

—)

powders  :

al
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Plasticall

bonded

Isolated hot-spots are unlikely to cause
detonation, the entire material acts as a
thermal bath

We assume extended defects, or
interacting clusters of hot-spots are
responsible for I&G

Looking at a micrograph, can we make
estimates of shock sensitivity?




6 ‘ Synthetic Microstructure Generation

Discrete Element Method Langevin dynamics with range of contact cohesion values:

*  Experimental micrographs are hard to come by,

Low cohesion

need an alternative for input geometries

* A pore is now a particle, take snapshots from this
coarse grained simulation.

Initial state: spheres placed at random in 250 X 500 nm
domain, no overlaps

Variations: Particle size distribution, TMD, cohesion, friction, random seed

Final step: shrink particles uniformly to generate final configuration

P
‘ ® High cohesion

o




17 I Proxy Measure of Sensitivity
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18 I CTH Exploration, Return to MD

Time = 0 ps
— : 250 2000
Limiting the computational cost 1800
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*  Generated synthetic microstructures can still be £ 150 1400
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cputhours) 7 800
* Detailed chemistry for ‘free’ with ReaxFT, can a 30 400
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Chemical Agreement Needs Some Work
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Conclusions and Outlook

mitwood@sandia.gov

The interesting physics/chemistry of shock waves in energetic materials span

many length and time domains, necessitates a merger of computational tools
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