
 1
 14. Jan. 2016

15. August 2019

A Load Balancing
Library for

Particle Simulations

ALL

Godehard Sutmann

[g.sutmann@fz-juelich.de]

 Institute for Advanced Simulation (IAS)
 Jülich Supercomputing Centre (JSC)
 Research Centre Jülich

M
itg

lie
d

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

 2
 14. Jan. 2016

15. August 2019

Acknowledgements

•  LB developments at Jülich Supercomputing Centre and ICAMS

Marvin Tegeler
(ICAMS)

Phase Field
Models

Jens Freche
(JSC)

Unstructured
Meshes

(Fundamentals)

Christoph Begau
(ICAMS)

Unstructured
Meshes

(Implementation)

Rene Halver
(JSC)

Tensor Product
Staggered Grid

LB Library

Carlos Teijeiro
(ICAMS)

LB library

 3
 14. Jan. 2016

15. August 2019

Load balancing

•  Scalability on parallel computers is often limited due to work
 imbalances on the processors (might be heterogeneous)

•  Problem occurs, e.g., if particle distributions within simulation get
 strongly inhomogeneous
!  some processors might be idle (make no harm)

!  speedup limited by slowest processes

•  Solutions
!  distribute workload

e.g. work stealing
!  larger data-traffic but simple geometries

!  adjust volume of domains
!  more complicated geometries and more involved

 communication patterns

semi-diluted polymer
melt in shear flow

 4
 14. Jan. 2016

15. August 2019

Load balancing in practice

•  Performance of homogeneous domain size will be limited by
 slowest processor

•  Speedup is limited by processor with
highest deviation of load from average

•  If characteristic length scale of highest work concentration is close
 to domain length, linear scaling can be recovered
•  prefactor <1
•  condition:

if

linear scaling is recovered
�W

i,max

(2P) ⇡ 1

2
�W

i,max

(P)

Amdahl‘s law for
non-homogeneous systems

�Wi(p) = Wi(p)� hW iP

 5
 14. Jan. 2016

15. August 2019

Model for Work Distribution

•  e.g. Model problem: 1d-Gaussian distribution of work (or particles)

process domain

process domain

process domain

P = 4

P = 16

P = 64

 6
 14. Jan. 2016

15. August 2019

Model for Work Distribution

•  e.g. Model problem: 1d-Gaussian distribution of work (or particles)

process domain

process domain

process domain

P = 4

P = 16

P = 64

 7
 14. Jan. 2016

15. August 2019

Model for Work Distribution

•  e.g. Model problem: 1d-Gaussian distribution of work (or particles)

process domain

process domain

process domain

P = 4

P = 16

P = 64
P >> 1

P � 1 : �W
i,max

(P)� 1

2
�W

i,max

(2P) ! 0

 8
 14. Jan. 2016

15. August 2019

Uniform domain decomposition

•  Consequences for scalability

maxP {�W (P)} ! c

P
(c < 1)

 9
 14. Jan. 2016

15. August 2019

Uniform domain decomposition

•  Consequences for scalability

sufficient fine resolution
continue with linear scaling

does not apply for highly dynamic systems

 10
 14. Jan. 2016

15. August 2019

Uniform domain decomposition

•  Consequences for efficiency

sufficient fine resolution
continue with linear scaling

T
i,max

(2P) ⇡ 1

2
T
i,max

(P)

does not apply for highly dynamic systems

 11
 14. Jan. 2016

15. August 2019

Imbalance due to Heterogeneity

•  Inclusion of Load Balancing gets highly important for

!  increasing heterogeneity of current hardware architectures
this becomes an even more important issue for Exascale machines
o  more involved programming models
o  different runtime behaviour of tasks and/or partitions

!  increasing computational power „invites“ to increase size and/or
 complexity in simulations, e.g.
o  multi-physics (different tasks on partitions, different costs of interactions)
o  complex geometries
o  asynchronous task execution

•  Transition to Exa-Scale needs inclusion of Load Balancing

 12
 14. Jan. 2016

15. August 2019

Strategy for load balancing the problem

•  Iterative schemes for best partition size of domains

!  in principle following a master equation approach
!  analogy to PDE solver to find a stationary solution

xixi�1 xi+1

W (k)
i�1 W (k)

i

 13
 14. Jan. 2016

15. August 2019

Load balancing: higher dimensions

•  Tensor decomposition

move domain borders
independently in each
cartesian direction

 14
 14. Jan. 2016

15. August 2019

Load balancing: higher dimensions

•  Tensor decomposition

eigenvalue analysis shows
that the iteration converges to

 15
 14. Jan. 2016

15. August 2019

Load balancing: higher dimensions

•  Tensor decomposition

 16
 14. Jan. 2016

15. August 2019

Load balancing: higher dimensions

•  Tensor decomposition

 17
15. August 2019

Example: No Load Balancing

•  No load balancing

•  System:
•  ~50000 MD particles
•  collapsing polymer gel

•  strong imbalance due
 to highly
 inhomogeneous
 particles distribution

 18
15. August 2019

Example: No Load Balancing

•  No load balancing
•  System:

•  ~50000 MD particles
•  collapsing polymer gel
•  strong imbalance due to highly inhomogeneous particles distribution

 19
15. August 2019

Example: Tensor Product Method

•  Load balancing
•  orthogonal decomp.
•  non-staggered

•  System:
•  ~50000 MD particles
•  collapsing polymer gel

•  strong imbalance due
 to highly
 inhomogeneous
 particles distribution

 20
15. August 2019

Example: Tensor Product Method

•  Load balancing: orthogonal decomposition
•  System:

•  ~50000 MD particles
•  collapsing polymer gel
•  strong imbalance due to highly inhomogeneous particles distribution

 21
 14. Jan. 2016

15. August 2019

Improved Load Balancing: staggered mesh

•  Improvement should not consider dimensions independently

Special case of an RCB method

 22
 14. Jan. 2016

15. August 2019

•  Improvement should not consider dimensions independently

Improved Load Balancing: staggered mesh

 23
 14. Jan. 2016

15. August 2019

•  Improvement should not consider dimensions independently

Improved Load Balancing: staggered mesh

 24
 14. Jan. 2016

15. August 2019

•  Improvement should not consider dimensions independently

Improved Load Balancing: staggered mesh

 25
15. August 2019

Example: Staggered Mesh Method

•  Load balancing
•  orthogonal decomp.
•  staggered

•  System:
•  ~50000 MD particles
•  collapsing polymer gel

•  strong imbalance due
 to highly
 inhomogeneous
 particles distribution

 26
15. August 2019

Example: Staggered Mesh Method

•  Load balancing: staggered grid decomposition
•  System:

•  ~50000 MD particles
•  collapsing polymer gel
•  strong imbalance due to highly inhomogeneous particles distribution

 27
15. August 2019

Convergence

•  Convergence depending on

!  relaxation parameter g
o  small g: large changes in boundaries

good for large imbalances but easy to overestimate close to convergence
o  large g: small changes in boundaries

slow for large imbalances but smoothly converging
 relaxation should be faster than system dynamics (sev. iterat./timestep)

!  number of degrees of freedom to balance
o  tensor product decomposition

o  staggered mesh decomposition

|D| = (P
x

� 1) + (P
y

� 1) + (P
z

� 1)D = D
x

⌦D
y

⌦D
z

|D| = P
x

� 1 + (P
x

� 1)(P
y

� 1) + (P
x

� 1)(P
y

� 1)(P
z

� 1)

= P
x

P
y

P
z

� P
x

P
z

� P
y

P
z

+ P
x

+ P
z

� 1

D = D
x

�D
y

[D
x

]�D
z

[D
y

[D
x

]]

!

 28
 14. Jan. 2016

15. August 2019

Library for Load Balancing ALL

•  Methods included in the library

!  orthogonal geometries (LAMMPS)
o  tensor product decomposition
o  staggered mesh
o  histogram method

(at present for starting configuration)

!  non-orthogonal geometries
o  topological meshes (vertex based)
o  Voronoi cell decomposition
o  graph partitioning

histogram method

topological mesh method

Voronoi method

 29
 14. Jan. 2016

15. August 2019

Library for Load Balancing ALL

•  Methods included in the library

!  orthogonal geometries (LAMMPS)
o  tensor product decomposition
o  staggered mesh
o  histogram method

(at present for starting configuration)

!  non-orthogonal geometries
o  topological meshes (vertex based)
o  Voronoi cell decomposition
o  graph partitioning

histogram method

topological mesh method

Voronoi method

 30
 14. Jan. 2016

15. August 2019

Load Balancing Library

•  Current implementation of the library includes

!  provides a suggestion of an improved domain decomposition
 scheme reducing imbalances

!  based on iterative scheme
!  easy to use

o  low threshold for application developers to apply the library
o  depending on the chosen method some adjustments might be needed

!  provides selection of load balancing schemes

!  does not deal with communication of particles / data
o  done on user level
o  does not interfer with administration of simulation code

 31
 14. Jan. 2016

15. August 2019

Load Balancing Library

•  Required input from user:
!  work per process (scalar) – different definitions possible

o  number of particles, number of interactions, time per particle, ...

!  current domain decomposition geometry (2x3x8 Bytes)
o  coordinates of verteces

!  MPI communicator
o  Cartesian or provide process grid information

•  Optional input:
!  cell information, e.g. if particle information is cell based

(under development)

•  Output
!  new domain decomposition
!  (optional): list of cells that entered / left the domain due to new

 geometry (under development)

 32
 14. Jan. 2016

15. August 2019

Integration (Workshop @JSC in June)

•  Codes considered for library
!  DL_Poly
!  DL_Meso
!  ESPResSo
!  ESPResSo++
!  HemeLB
!  IMD
!  MP2C

•  First implementations for
!  HemeLB, MP2C, ESPResSo++

 33
 14. Jan. 2016

15. August 2019

Outlook

•  Possible integration into LAMMPS (complementary to existing methods)

!  Orthogonal methods
o  requirements: domain boarders flexible

!  Non-Orthogonal methods
o  requirements: domain boarders composable by cells

•  Orthogonal iterative methods offer advantage for, e.g., RCB method
!  not each LB step has to be completely reconstructed

Suggestion for cooperation with core developers of LAMMPS

DD at core of LAMMPS architecture

