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Load balancing 

•  Scalability on parallel computers is often limited due to work
 imbalances on the processors (might be heterogeneous) 

•  Problem occurs, e.g., if particle distributions within simulation get
 strongly inhomogeneous 
!  some processors might be idle (make no harm) 

!  speedup limited by slowest processes 

•  Solutions 
!  distribute workload  

e.g. work stealing 
!  larger data-traffic but simple geometries 

!  adjust volume of domains  
!  more complicated geometries and more involved

 communication patterns 

semi-diluted polymer 
melt in shear flow 
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Load balancing in practice 

•  Performance of homogeneous domain size will be limited by
 slowest processor 

•  Speedup is limited by processor with  
highest deviation of load from average 

•  If characteristic length scale of highest work concentration is close
 to domain length, linear scaling can be recovered 
•  prefactor <1 
•  condition:  

if 

linear scaling is recovered 
�W

i,max

(2P ) ⇡ 1

2
�W

i,max

(P )

Amdahl‘s law for  
non-homogeneous systems 

�Wi(p) = Wi(p)� hW iP



  5 
    14. Jan. 2016 

15. August 2019 

Model for Work Distribution 

•  e.g. Model problem: 1d-Gaussian distribution of work (or particles) 

process domain 

process domain 

process domain 

P = 4 

P = 16 

P = 64 
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Model for Work Distribution 

•  e.g. Model problem: 1d-Gaussian distribution of work (or particles) 

process domain 

process domain 

process domain 

P = 4 

P = 16 

P = 64 
P >> 1 

P � 1 : �W
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(P )� 1
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Uniform domain decomposition 

•  Consequences for scalability 

maxP {�W (P )} ! c

P
(c < 1)
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Uniform domain decomposition 

•  Consequences for scalability 

sufficient fine resolution 
continue with linear scaling 

does not apply for highly dynamic systems 
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Uniform domain decomposition 

•  Consequences for efficiency 

sufficient fine resolution 
continue with linear scaling 

T
i,max

(2P ) ⇡ 1

2
T
i,max

(P )

does not apply for highly dynamic systems 
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Imbalance due to Heterogeneity 

•  Inclusion of Load Balancing gets highly important for 

!  increasing heterogeneity of current hardware architectures 
this becomes an even more important issue for Exascale machines 
o  more involved programming models  
o  different runtime behaviour of tasks and/or partitions 

!  increasing computational power „invites“ to increase size and/or
 complexity in simulations, e.g. 
o  multi-physics (different tasks on partitions, different costs of interactions) 
o  complex geometries 
o  asynchronous task execution 

•  Transition to Exa-Scale needs inclusion of Load Balancing 
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Strategy for load balancing the problem 

•  Iterative schemes for best partition size of domains 

!  in principle following a master equation approach 
!  analogy to PDE solver to find a stationary solution 

xixi�1 xi+1

W (k)
i�1 W (k)

i
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Load balancing: higher dimensions 

•  Tensor decomposition 

move domain borders  
independently in each 
cartesian direction 



  14 
    14. Jan. 2016 

15. August 2019 

Load balancing: higher dimensions 

•  Tensor decomposition 

eigenvalue analysis shows  
that the iteration converges to 
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Load balancing: higher dimensions 

•  Tensor decomposition 
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Load balancing: higher dimensions 

•  Tensor decomposition 
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Example: No Load Balancing 

•  No load balancing 

•  System: 
•  ~50000 MD particles 
•  collapsing polymer gel 

•  strong imbalance due
 to highly
 inhomogeneous
 particles distribution  
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Example: Tensor Product Method 

•  Load balancing 
•  orthogonal decomp. 
•  non-staggered 

•  System: 
•  ~50000 MD particles 
•  collapsing polymer gel 

•  strong imbalance due
 to highly
 inhomogeneous
 particles distribution  
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Example: Tensor Product Method 

•  Load balancing: orthogonal decomposition 
•  System: 

•  ~50000 MD particles 
•  collapsing polymer gel 
•  strong imbalance due to highly inhomogeneous particles distribution  
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Improved Load Balancing: staggered mesh 

•  Improvement should not consider dimensions independently 

Special case of an RCB method  
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•  Improvement should not consider dimensions independently 

Improved Load Balancing: staggered mesh 
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Example: Staggered Mesh Method 

•  Load balancing 
•  orthogonal decomp. 
•  staggered 

•  System: 
•  ~50000 MD particles 
•  collapsing polymer gel 

•  strong imbalance due
 to highly
 inhomogeneous
 particles distribution  
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Example: Staggered Mesh Method 

•  Load balancing: staggered grid decomposition 
•  System: 

•  ~50000 MD particles 
•  collapsing polymer gel 
•  strong imbalance due to highly inhomogeneous particles distribution  
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Convergence 

•  Convergence depending on  

!  relaxation parameter g 
o  small g: large changes in boundaries  

good for large imbalances but easy to overestimate close to convergence 
o  large g: small changes in boundaries  

slow for large imbalances but smoothly converging 
     relaxation should be faster than system dynamics (    sev. iterat./timestep) 

!  number of degrees of freedom to balance 
o  tensor product decomposition 

o  staggered mesh decomposition 
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Library for Load Balancing ALL 

•  Methods included in the library 

!  orthogonal geometries (LAMMPS) 
o  tensor product decomposition 
o  staggered mesh 
o  histogram method  

(at present for starting configuration) 

!   non-orthogonal geometries  
o  topological meshes (vertex based) 
o  Voronoi cell decomposition 
o  graph partitioning 

histogram method 

topological mesh method 

Voronoi method 
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Load Balancing Library 

•  Current implementation of the library includes 

!  provides a suggestion of an improved domain decomposition
 scheme reducing imbalances 

!  based on iterative scheme 
!  easy to use 

o  low threshold for application developers to apply the library 
o  depending on the chosen method some adjustments might be needed 

!  provides selection of load balancing schemes 

!  does not deal with communication of particles / data 
o  done on user level 
o  does not interfer with administration of simulation code 
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Load Balancing Library 

•  Required input from user: 
!  work per process (scalar) – different definitions possible 

o  number of particles, number of interactions, time per particle, ... 

!  current domain decomposition geometry (2x3x8 Bytes) 
o  coordinates of verteces 

!  MPI communicator  
o  Cartesian or provide process grid information 

•  Optional input: 
!  cell information, e.g. if particle information is cell based  

(under development) 

•  Output 
!  new domain decomposition 
!  (optional): list of cells that entered / left the domain due to new

 geometry (under development) 
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Integration (Workshop @JSC in June) 

•  Codes considered for library 
!  DL_Poly 
!  DL_Meso 
!  ESPResSo 
!  ESPResSo++ 
!  HemeLB 
!  IMD 
!  MP2C 

•  First implementations for 
!  HemeLB, MP2C, ESPResSo++ 
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Outlook 

•  Possible integration into LAMMPS (complementary to existing methods) 

!  Orthogonal methods    
o  requirements: domain boarders flexible 

!  Non-Orthogonal methods    
o  requirements: domain boarders composable by cells 

•  Orthogonal iterative methods offer advantage for, e.g., RCB method 
!  not each LB step has to be completely reconstructed 

Suggestion for cooperation with core developers of LAMMPS 

DD at core of LAMMPS architecture 


