

High Value from High Throughput: Harness the Power of LAMMPS with MedeA®

Ray Shan Materials Design

LAMMPS Workshop 15 August 2019

MedeA® Software Environment

/

MedeA® Software Environment

Engines

 VASP, GIBBS, LAMMPS, GAUSSIAN, MOPAC

Databases

 ICSD, Pauling, Pearson's, NIST, COD, InfoMaticA Query Engine, MPDS

Builders

- Crystals, nanoparticles, amorphous materials, interfaces, molecules, polymers, conformers, thermosets, docking
- Force Fields (potentials)
 - Forcefields bundle, Forcefield Optimizer

Property Modules

 MT, TSS, Phonon, Electronics, UNCLE, LAMMPS (Diffusion, Thermal Conductivity, Viscosity, CED, Surface Tension), P3C,

High Throughput

 HT-Launchpad, HT-Descriptors, HT-Correlation

Analysis

- Broad range of analysis tools
- JobServer & TaskServer

Potentials in MedeA

- Metallic forcefields:
 - EAM
 - All LAMMPS eam, eam/fs, and eam/alloy variants
 - MEAM
- Inorganic forcefields:
 - Buckingham
 - BKS
 - Clay-FF
 - CVFF_aug
- Semiconductor forcefields:
 - Tersoff
 - Stillinger-Weber
 - REBO

- Organic (valence) forcefields:
 - PCFF/PCFF+*
 - Compass/Compass+
 - OPLS-AA/OPLS-AA+*
 - AUA/AUA+ *
 - Trappe+ *
- Variable charge forcefields
 - Streitz-Mintmire
 - COMB3
 - ReaxFF
- All other potentials in LAMMPS can be invoked via some additional lines of LAMMPS commands

^{*} Also available in MedeA®-GIBBS

Current Approach...

5

... Going to High-Throughput

Warmup: T_g of PPE

Glass Transition T_g of a Polymer

Where is the T_g ?

Amorphous System V vs T

Glass Transition T_g of a Polymer

Value of high throughput calculations:

► Clear signal from noisy simulation data

- ► Variability in individual V vs. T curves (gray lines)
- Fit yields properties for the simulated system
- Automatic procedure: single high throughput flowchart

High-throughput Sampling: Mechanical properties of a high performance thermoset resin

Building a Monomer

Use the SMILES string

Modifying into a Repeat Unit

- Edit into a repeat unit with the Molecular Builder
 - Break bond, delete H atoms, then define a repeat unit

Turning into a Polymer

- Build with MedeA Polymer Builder
 - DP = 5 in this example

Building Initial Amorphous Material

- Use MedeA Amorphous Materials Builder
 - Combine poly(dicyclopentadiene) with cross-linkers

Initial density: 0.3 g/cc

Equilibrating the Amorphous Material

- With MedeA LAMMPS using PCFF+ forcefield
 - Design simulation workflow with Flowchart

Equilibrium density at 300K: 0.963 g/cc

Creating Cross-links

With MedeA Thermoset Builder

Predicting Mechanical Properties

- Final equilibration and calculate mechanical properties
 - Includes elastic constants, modulus, and thermodynamic functions

Modulus	Voigt	Reuss	Hill	
Bulk	2.13	1.99	2.06	GPa
Shear	1.20	1.02	1.11	GPa
Young's	3.03	2.61	2.82	GPa
Longitudinal	3.73	3.35	3.54	GPa

High-Throughput Sampling

 Use MedeA High-Throughput Flowchart to turn 1 initial configuration to hundreds of samples and perform property calculations automatically

High-Throughput Sampling

Results written in a table

Density g/cm^3	Energy kcal/mol	Hill Bulk Modulus GPa	Hill Shear Modulus GPa	Hill Young's Modulus GPa	Stabilit
	+		+		
0.913854	188.919249	2.51	1.63	4.02	1
0.911153		0.52	0.50	1.23	i 0
	3809.325976	2.23	1.05	2.71	1
0.915711		1.78	0.88	2.26	1
0.971271		2.76	1.41	3.62	1
	187.605648	2.49	1.86	4.47	i ī
	3515.846232	2.86	1.40	3.61	1
	3793.735874	2.62	1.24	3.21	ı î
0.907735		2.60	1.46	3.68	ī
	189.871619	-0.03	0.26	0.63	i
0.968701		2.49	1.41	3.55	1
0.968728		2.77	1.43	3,66	1
0.867437		2.08	1.45	3.53	1
0.894680		1.72	0.73	1.89	i
0.917270		2.07	1.02	2.61	î
0.904528		2.10	1.53	3.68	î
	3729.916964	2.79	1.46	3.73	î
0.958045		2.57	1.24	3.21	î
	189.164879	0.90	0.66	1.60	1 0
0.988430	3409.544716	2.71	1.37	3.51	1 1
	3754.486168	2.63	1.34	3.44	1
	188.046028	2.58	1.66	3.94	1 0
0.942615		2.50		2.43	0
0.930334		3.34	0.90 2.48	5.96	1 1
				1.18	0
0.905169 0.994661		0.86 2.05	0.47	2.71	1 1
		1.80	1.06		1 1
0.957068		2.98	1.05	2.63	1
0.973829			1.49		1 1
0.853735		0.49	0.64	1.30	1 0
0.924945		0.90	0.53	1.39	0 1
0.907131		2.71	1.58	3.96	1 1
0.968984		3.07	1.55	3.99	l 0
0.851309		0.75	0.34	0.82	0
0.932742		8.12	3.00	7.89	1 0
0.948090		2.19	1.07	2.61	
0.862262		0.42	0.13	0.39	0
0.971970		2.70	1.20	3.13	1
	3728.734764	2.68	1.04	2.75	1 0
0.903234		2.64	1.12	2.88	0 1
0.959122		2.09	1.09	2.79	
1.023171	185.480268	3.99	2.00	5.09	1
0.904138		2.24	1.89	4.42	1
0.965173		2.60	1.42	3.61	1
0.960062		2.32	1.23	3.13	1
0.953017	3804.271575	2.41	1.26	3.22	1 0
0.889294	193.013059	2.11	-1.32	-14.32	0

© Materials Design, Inc. 2019

High-Throughput Sampling

- Sampling over 200 configurations
 - 65.5% of the 200 samples were mechanically stable
 - Y in good agreement with experimental results of ~2.6 GPa

Summary

- Sampled through 200 cross-linked thermoset resins for their mechanical stability and elastic moduli
 - Generated 200 resin samples from 1 set of molecules and cross-linker
 - From molecules to amorphous materials to thermoset
 - Distribution of Young's modulus in excellent agreement with experiment

High-Throughput Screening

HT Implementation in MedeA

Ce/O, Am/O, Cm/O, Np/O, Pu/O, Th/O, and U/O compounds

25

- Retrieve all Ce/O compounds
 - With MedeA® InfoMaticA

- Retrieve all Ce/O compounds
 - With MedeA® InfoMaticA

Retrieve all actinide oxide compounds

Require that

Require that

Require that

Require that

Require that

formula

formula

number of elements

structural completeness

-Add new criterion-

- Save in a structure list:
 - 56 Ce/actinide oxide compounds in various space groups

Assign the Cooper force field for actinide oxides ¹

Prepare a High-throughput flowchart

Run HT calculations in parallel or serial

Value: Highly efficient screening of large number of compounds

- View results from Job.out
 - 112 (56*2) calculations finished in 749 seconds on an 8-core Intel Linux box

Formula	Space Group	Density g/cm^3	0VacancyEnergy eV
Am203	P-3m1	13.5234	2.063400
Am0	Fm-3m	15.2106	5.953601
AmO2	Fm-3m	11.8527	5.917101
Am203	C2/m	13.3225	7.237001
Am203	Ia-3	12.2707	8.011002
Ce203	P321	4.4884	-732.879751
Ce203	P-3m1	8.1413	3.246101
Ce02	P4_2/mnm	6.3383	9.205002
Ce02	I4/mmm	7.9265	-115.379024
Ce02	P-3m1	8.2788	-33.889407
Ce0	Fm-3m	8.9324	5.996101
CeO2	Fm-3m	7.2611	5.981401

 Can further convert O removal energy to O vacancy formation energy by considering energy of O₂

ı	U308	P-62m	7.3755	8.549902
Ĺ	UO	Fm-3m	14.6722	5.218701
İ	U02	Pa-3	10.4769	6.975001
İ	U02	Fm-3m	11.0449	5.903401
İ	U03	P2_12_12_1	8.3340	8.101002
İ	U308	Amm2	7.3810	10.619602
İ	U02	Pbca	10.9016	7.341002
İ	U03	P2_1	8.0113	-148.610031
Ĺ	U308	P2_1/m	7.2044	7.213001
İ	U308	Cmcm	7.1665	10.653002
İ	U03	I4_1/amd	7.4985	-125.429026
İ	U13034	Amm2	7.2381	8.780002
İ	U03	P-3m1	7.6785	3.683401
İ	U03	Pm-3m	5.4056	11.080502
+-		+	++	+

Summary

- Screened 56 Ce/O, Am/O, Cm/O, Np/O, Pu/O, Th/O, and U/O compounds for their oxygen removal energies
 - Directly imported structures from MedeA® databases to structure list
 - Set up LAMMPS calculations with Cooper potential
 - Results written to a table and a csv text file
- Same flowchart and strategy can be applied to other materials properties using other potentials

Conclusions

- The MedeA® environment hosts a variety of versatile tools required for creation of realistic models of materials
 - Molecules, amorphous liquids and solids
 - Bulk polymer, crosslinked resins
 - Interfacial systems and composites
- Integration of highly regarded simulation codes, including LAMMPS, VASP, GIBBS, MOPAC, and Gaussian enables multiple types of property calculation on materials of interest.
- MedeA® High Throughput Launchpad enables the automated, massive screening, exploring, and sampling of materials properties
 - Young's modulus of thermoset resins
 - Oxygen removal energy of actinide oxides

Acknowledgements

Aidan Thompson, Steve Plimpton, and Stan Moore

