How to Distinguish F-(aq) from CI-(aq), Locally ?

Ajay Muralidharan¹, Lawrence Pratt¹, Mangesh Chaudhari², <u>Susan Rempe²</u>

¹Tulane University, New Orleans, LA ²Sandia National Laboratories, Albuquerque, NM

Sentin milly

SNL is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE's NNSA under Contract DE-NA0003525.

Challenges

Same charge

Similar size (ionic radii)

0.13 nm

F-

0.18 nm

http://abulafia.mt.ic.ac.uk/shannon/ptable.php

Living example

Fluc channels distinguish F-/CI- — by 104! Miller, et al. *eLife* (2017)

Ion hydration as reference

Ion free energy vs channel structure

Chaudhari, SBR, et al. Acc. Chem. Res. (in prep)

Measuring local ion hydration structure

1.2 nm

Ab initio molecular dynamics (AIMD)

Chaudhari, Soniat, SBR JPCB (2015)

Chaudhari, SBR JCP (2018)

Experiments agree with simulations!

4 vs 6 motivates new experiments

SBR, et al. *JACS* (2000)

Neilson, SBR, et al. JPCB (2015)

Comparison (peak position)

Ion ⁺	AIMD	EXP	Ion ²⁺	AIMD	EXP
Li	$1.95^{\begin{subarray}{c c c c c c c c c c c c c c c c c c c $	1.96^{44}	Mg	2.09^{-56}	2.04^{146}
Na	$2.37^{\ 26}$	2.38^{47}	Ca	2.45^{-56}	$2.43^{146,147}$
K	2.73^{2628}	2.73^{48}	Sr	2.64^{30}	$2.63^{148,149}$
Rb	2.95^{43}	3.10^{150}	Ba	$2.81^{\ 55}$	2.80^{144}

Chaudhari, Vanegas, Muralidharan, Pratt, SBR, Acc. Chem. Res. (in prep)

Computing free energy

Forward Widom:

$$\mathrm{e}^{-\beta\mu^{(\mathrm{ex})}} = \left\langle \left\langle \mathrm{e}^{-\beta\Delta U} \right\rangle \right\rangle_{0}$$

 $\langle \langle .. \rangle \rangle_0$: uncoupled averaging

Reverse Widom:

$$e^{+\beta\mu^{(ex)}} = \left\langle e^{+\beta\Delta U} \right\rangle$$

Hydration Excess chemical potential Beck, Paulaitis, Pratt The Potential Distribution Theorem ... (2016)

Computing free energy - QCT

$$\chi_n = \begin{cases} 1, & \text{if occupied by n ligands} \\ 0, & \text{otherwise} \end{cases}$$

$$p(n) = \langle \chi_n \rangle = \frac{\langle \langle e^{-\beta \Delta U} \chi_n \rangle \rangle_0}{\langle \langle e^{-\beta \Delta U} \rangle \rangle_0}$$

$$p(n) = \frac{\left\langle \left\langle e^{-\beta \Delta U} | n \right\rangle \right\rangle_0 p^{(0)}(n)}{e^{-\beta \mu^{(ex)}}}$$

Quasi-chemical theory (QCT) (direct or cluster)

Pratt, SBR "Red Book" (1999) Rogers, SBR, et al Ann Rep Comp Chem (2013)

Cluster-QCT free energy

$$\beta \mu_{\rm F^{-}}^{\rm (ex)} = -\ln {\sf K}_n^{(0)} \rho^n + \ln p(n) + \left\{ \beta \mu_{\rm F(H_2O)_n^{-}}^{\rm (ex)} - n \beta \mu_{\rm H_2O}^{\rm (ex)} \right\}$$

$$F^- + nH_2O \rightleftharpoons^{\kappa_n} F(H_2O)_n^-$$

$$(p(0)\rho^n) \times K_n = p(n)$$

Define $K_n^{(0)}$: Equilibrium constant with reactants and products treated as ideal gases.

Exact for any n, λ Permits QM/AIMD for $K_n^{(0)}$, p(n)

Cluster QCT free energy

$$\beta \mu_{\rm F^{-}}^{\rm (ex)} = -\ln {\it K_n^{(0)}} \rho^n + \ln p(n) + \left\{ \beta \mu_{\rm F(H_2O)_n^{-}}^{\rm (ex)} - n \beta \mu_{\rm H_2O}^{\rm (ex)} \right\}$$

Thermodynamic Cycle

Harmonic cluster vibrations typically assumed Single structures typically analyzed in cluster hydration

QCT free energies

Cation hydration agrees with experiment

i. Anions interact differently than cations (anion-H)

ii. Anions interact differently than cations (water-water vibrations)

anharmonic vibrations

harmonic vibrations

iii. Anions interact differently than cations (competing structures)

one low energy structure (Ba²⁺)

many low energy structures (CI-) (sampled from AIMD & optimized in gas)

Need:

- Iowest E structure for $K^{(0)}$
- liquid distribution of structures for

Challenges of computing anion hydration

Ion-H interactions Competing structures Anharmonic water-water vibrations

New approach to anion hydration

Ion-H interactions — analyze (structure) Competing structures — treat (Widom) Anharmonic vibrational motions — dynamics (ADMP)

Results F-(aq) & Cl-(aq)

Muralidharan, Chaudhari, Pratt, Rempe, *Chem. Phys. Lett.: X (Frontiers)* (2019). C & F Muralidharan, Pratt, Chaudhari, Rempe, *J. Phys. Chem. A* (2018). F Chaudhari, Rempe, Pratt, *J. Chem. Phys.* 147:161728 (2017).

Sabo, Jiao, Varma, Pratt, SBR *Ann. Rep. Prog. Chem.: Sect. C* 109:266 (2013). Sabo, Varma, Martin, SBR *J. Phys. Chem. B* 112:867 (2008).

Radial distribution function g(r): X- to H

F & CI same **local** coordination (4 waters) F ligands **tighter**

Different dynamics (gas) — dipole vs OH-F

Different dynamics & structures (gas)

F ligands not H-bonded

Harmonic approx. OK for enthalpy of clustering (gas)

Strong chemical interactions (anion-ligand)

Anharmonicity needed for free E. of clustering (gas)

Especially for $CI(H_2O)_{n>1}$ entropy component

Free energy differences due to local ion-water interactions (aq)

Independent of *n*, λ

QCT free energies

Cation & anion hydration agree with experiment

F-& CI-story so far..

- CI- larger (0.05 nm), looser ligands
- 4 waters define g(r) peak
- Dynamics dipole-rock dominated
- Anharmonic vibrations due to water-water H-bonds

- F- smaller, tighter ligands
- 4 waters define g(r) peak
- Dynamics F-OH stretch dominated.
- Harmonic vibrations.

Next, evaluate dynamic ion binding to Fluc channels...

2 F- binding sites

- QCT & molecular simulation predict cation & anion hydration (no fits).
- Hydration is reference for ion channel permeation.
- Same number of waters define peaks in g(r) 4
- CI larger, ligated looser, cluster dynamics anharmonic & dipole-rock dominated.
- F smaller, ligated tighter, cluster dynamics harmonic & F-OH stretch dominated.

Acknowledgements

Sandia's LDRD Program DOE Center for Integrated Nanotechnology

slrempe@sandia.gov

Ajay

Mangesh