Modified Embedded Atom Method (MEAM) with Bond Order Implementation in LAMMPS

Presenter: Sungkwang Mun

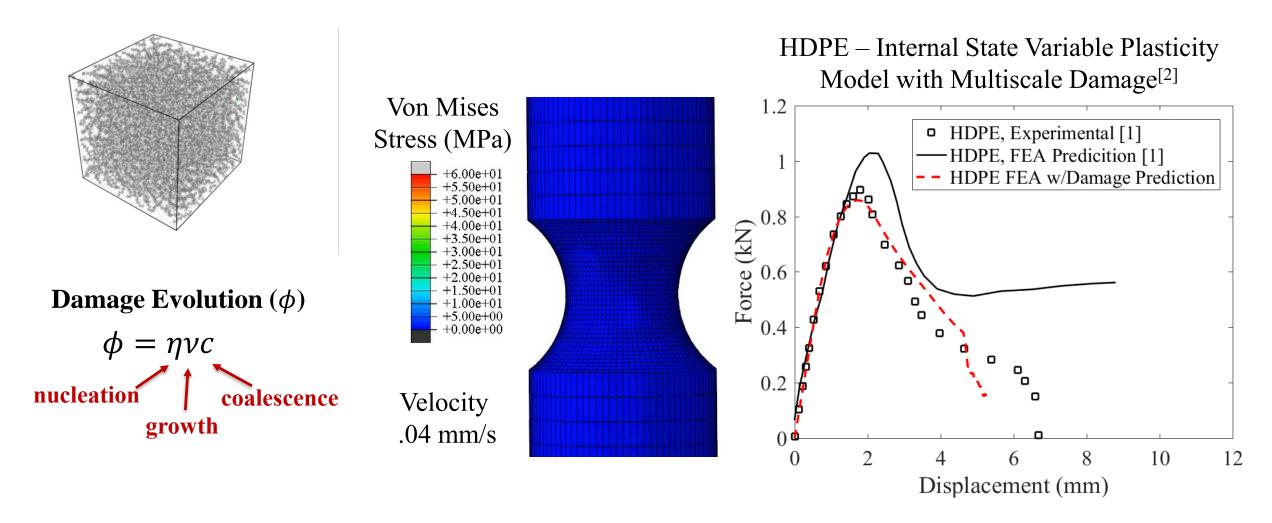
Ric Carino, Michael Baskes

Center for Advanced Vehicular Systems (CAVS)

Mississippi State University

6th LAMMPS Workshop and Symposium

Aug. 14, 2019



Outline

- 1. Motivation
- 2. MEAM with bond order (MEAM-BO)
 - 1. Equations in detail
 - 2. Prediction comparison with other force-fields (REBO and ReaxFF)
- 3. Implementation of MEAM-BO in LAMMPS
- 4. Summary and future works

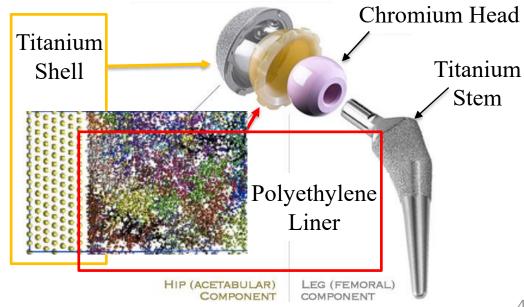
Fracture predicted in finite element analysis of notched tension specimen of high-density polyethylene (HDPE)

^[1] Ognedal, A.S., Large-Deformation Behavior of Thermoplastics at Various Stress States, Ph.D. Thesis, Norwegian University of Science and Technology, (2012). [2] A. L. Bowman, S. Mun, S. Nouranian, S. R. Gwaltney, M. I. Baskes, and M. F. Horstemeyer, "Multiscale Damage and Fracture Modeling Using Molecular Dynamics and Continuum Internal State Variable Theory for Polyethylene," in preparation.

Modified Embedded Atom Method (MEAM)

EAM(1984)

- Linear
- FCC structure

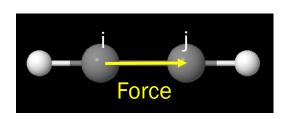

MEAM(1988)

- Angular
- Screening
- BCC, HCP, diamond structure

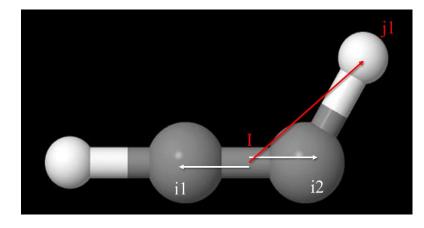
MEAM-BO (2017, 2018)

- Double/triple bond
- Van der Waals interaction [2]
- C/H (done) O/N (in progress)
- Polymer/metal interface

- ✓ Embedded Atom Method (EAM) is first developed by Daw and Baskes in 1984 based on density functional theory (DFT) later extended by Bakes to handle angular dependency (MEAM)
- ✓ EAM and MEAM are widely used for metallic system dealing with many problems such as point defects, melting, grain boundary, dislocations, fracture, surface, bulk and interface problems, etc
- ✓ Recently, MEAM is extended for hydrocarbon system; MEAM with bond order (MEAM-BO) [1]


Outline

- 1. Motivation
- 2. MEAM with bond order (MEAM-BO)
 - 1. Equations in detail
 - 2. Prediction comparison with other force-fields (REBO and ReaxFF)
- 3. Implementation of MEAM-BO in LAMMPS
- 4. Summary and future works


MEAM with bond order (**MEAM-BO**)

$$E_{\text{MEAM-BO}} = E_{\text{MEAM}} + \sum_{I} f_{I3} \cdot E_3(R_I) + \sum_{I} f_{I2} \cdot E_2(R_I, BO_I)$$

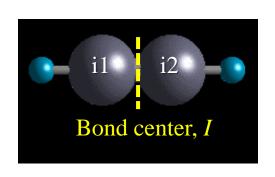
- f_{Ibond} : Energy fraction depends on electron density at each bond to satisfy geometrical condition
- $E_{\text{bond}}(R_I, BO_I)$: Energy increment due to the bond unsaturation w.r.t bond order to shift MEAM energy to first principle (FP) energy
- If no bond characteristic, the two terms will be zero and return to the original MEAM
- New entity: bond center *I* which is a halfway between two atoms

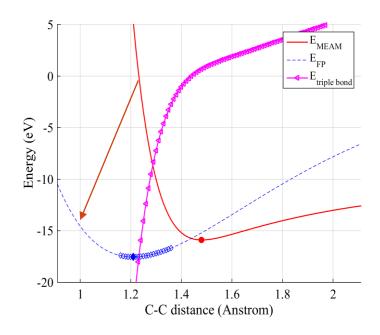
MEAM force deals i-j atom pairs only

MEAM-BO requires additional force due to bond center, i.e. I-j where I=(i1+i2)/2

Bond order calculation in detail

•
$$E_{\text{MEAM-BO}} = E_{\text{MEAM}} + \sum_{I} f_{I3} \cdot E_{3}(R_{I}) + \sum_{I} f_{I2} \cdot E_{2}(R_{I}, BO_{I})$$


• Triple bond (e.g. 2 neighbors per carbon)

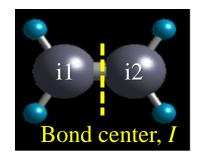

•
$$f_{I3} = S_{i_1 i_2} \cdot D_3^{(0)} \left(\left[Z_{i_1}^{(0)} - Z_3 \right]^2 \right) \cdot D_3^{(0)} \left(\left[Z_{i_2}^{(0)} - Z_3 \right]^2 \right) \cdot D_3^{(3)} \left(\left[Z_I^{(3)} \right]^2 \right)$$

where $Z_i^{(0)}$, $Z_i^{(1)}$, $Z_I^{(3)}$: counting factors, $D_{\text{bond}}^{(h)}$ is Gaussian type function

•
$$D_{\mathrm{bond}}^{(h)}(Z) = \exp\left(-Z^{p_{\mathrm{bond}}^{(h)}} \cdot \beta_{\mathrm{bond}}^{(h)}\right)$$
, $h = 0,1$, and 3

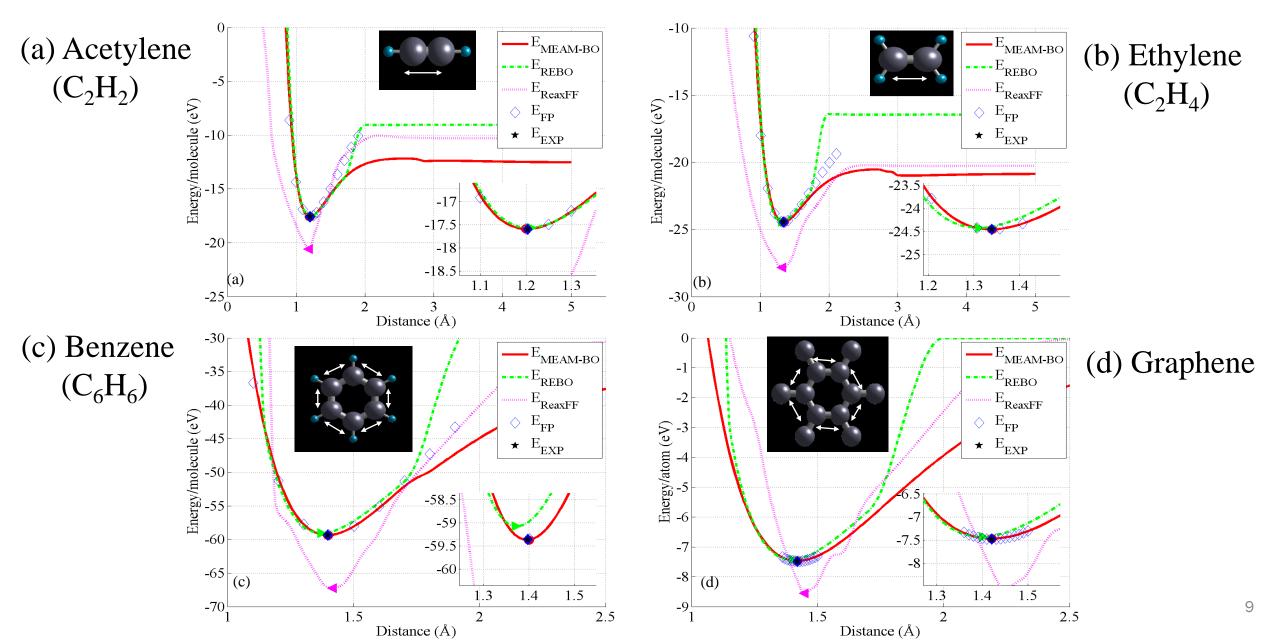
•
$$E_3(R_I) = e_0 \cdot \left\{ 1 + \sum_{k=1}^2 e_k \cdot \left[\frac{R_I}{R_3} - 1 \right]^k \right\}$$

Bond order calculation in detail


- $E_{\text{MEAM-BO}} = E_{\text{MEAM}} + \sum_{I} f_{I3} \cdot E_{3}(R_{I}) + \sum_{I} f_{I2} \cdot E_{2}(R_{I}, BO_{I})$
- Double bond (e.g. 3 neighbors per carbon, planar, two parallel planes)

•
$$f_{I2} = S_{i_1 i_2} \cdot D_2^{(0)} \left(\left[Z_{i_1}^{(0)} - Z_2 \right]^2 \right) \cdot D_2^{(0)} \left(\left[Z_{i_2}^{(0)} - Z_2 \right]^2 \right)$$

 $\cdot D_2^{(1)} \left(\left[Z_{i_1}^{(1)} \right]^2 \right) \cdot D_2^{(1)} \left(\left[Z_{i_2}^{(1)} \right]^2 \right) \cdot D_2^{(3)} \left(\left[Z_I^{(3)} \right]^2 \right) + f_{I3} \cdot \left(1 - D_3^{(3)} \left(\left[Z_I^{(3)} \right]^2 \right) \right)$


•
$$E_2(R_I, BO_I) = e_0(BO_I) \cdot \left\{ 1 + \sum_{k=1}^2 e_k(BO_I) \cdot \left[\frac{R_I}{R_2(BO_I)} - 1 \right]^k \right\}$$

· $\exp\left(-\beta_2^{(2)} \cdot \left[\frac{R_I}{R_2(BO_I)} - 1 \right] \right) + \left[1 - S_{i_1 i_2} \right] \cdot E_{\text{vdW}}(R_I)$

Where bond order, $BO_I = \frac{2+n_I}{n_I}$

•
$$n_{I} = \max \left(\sum_{j \neq i_{1}} S_{i_{1}j} \cdot D_{2}^{(0)} \left(\left[Z_{j}^{(0)} - Z_{2} \right]^{2} \right) \cdot D_{2}^{(1)} \left(\left[Z_{j}^{(1)} \right]^{2} \right) + \sum_{j \neq i_{2}} S_{i_{2}j} \cdot D_{2}^{(0)} \left(\left[Z_{j}^{(0)} - Z_{2} \right]^{2} \right) \cdot D_{2}^{(1)} \left(\left[Z_{j}^{(1)} \right]^{2} \right) \right)$$

Reference structures for unsaturated hydrocarbon

Atomization energy comparison

				MEAM-BO		REBO		ReaxFF	
Molecule	Expt.	ZPE	Heat inc.	Calc.	Corr.	Calc.	Corr.	Calc.	Corr.
	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
Methane	17.018	1.214	2.592	18.232	17.018	18.185	16.971	20.092	17.499
Ethane	28.885	2.023	4.515	30.941	28.918	30.846	28.823	34.453	29.937
Propane	40.880	2.803	6.439	43.723	40.92	43.593	40.790	48.732	42.294
n-Butane	52.896	3.578	8.362	56.503	52.925	56.347	52.769	63.020	54.658
Isobutane	52.977	3.564	8.362	56.559	52.995	56.340	52.776	63.030	54.669
n-Pentane	64.915	4.351	10.285	69.282	64.931	69.102	64.751	77.308	67.023
Isopentane	64.964	4.338	10.285	69.328	64.99	69.050	64.712	77.325	67.040
Neopentane	65.123	4.319	10.285	69.416	65.097	69.074	64.755	77.711	67.426
n-Hexane	76.922	5.123	12.208	82.062	76.939	81.858	76.735	91.593	79.385
Isohexane	76.975	5.113	12.208	82.072	76.959	81.677	76.564	91.541	79.333
3-Methylpentane	76.946	5.114	12.208	82.071	76.957	81.742	76.628	91.540	79.332
2,3-Dimethylbut	76.970	5.101	12.208	82.119	77.018	81.701	76.600	91.532	79.324
Neohexane	77.060	5.098	12.208	82.145	77.047	81.723	76.625	91.955	79.748
n-Heptane	88.957	5.896	14.131	94.841	88.945	94.614	88.718	105.886	91.755
Isoheptane	89.008	5.881	14.131	94.81	88.929	94.370	88.489	105.874	91.743
n-Octane	100.971	6.668	16.054	107.62	100.952	107.369	100.701	120.174	104.120
Percent error:					0.1		0.4		3.2

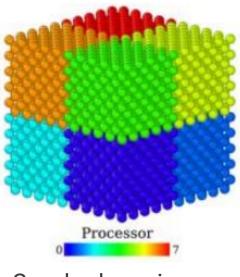
Graphene and graphite properties

	<u> </u>		•	•				
		MEAM-BO		REBO		ReaxFF		
Species	Property	Expt.	Calc.	Diff.	Calc.	Diff.	Calc.	Diff.
Graphene	$E_{\rm Corr}({\rm eV/atom})$	7.315^{f}	7.304	-0.011	7.243	-0.072	6.884	0.431
	Lattice const., a (Å)	2.462^{g}	2.46	-0.002	2.419	-0.043	2.501	0.041
	$C_{11} + C_{12} $ (N/m)	358.1 ^h	361.6	3.5	436.9	78.8	744787	744428
	C_{66} (N/m)	60.4^{h}	132.3	71.9	194.0	133.6	193449	193388
	Young's modulus (GPa)	1020^{i}	1022^{k}	2.4	1279 ^k	259	53704 k	52684
	Poisson's ratio	0.165^{i}	0.156	-0.009	0.126	-0.039	0.979	0.814
	Percent error			21.0		49.2		88954
Graphite	$E_{\rm Corr}({\rm eV/atom})$	7.371a	7.37	-0.001	7.311	-0.060	7.413	0.042
	Lattice const., a (Å)	2.462^{g}	2.47	0.008	2.418	-0.042	2.501	0.041
	Lattice const., c (Å)	6.707^{g}	6.707	0	6.713	0.008	6.319	-0.386
	$C_{11} + C_{12}$ (GPa)	1240^{j}	1051	-189	1309	69	2434604	2433364
	$C_{66}(GPa)$	440 ^j	401	-39	508	69	12822	12382
	$C_{13}(GPa)$	15 ^j	28	13	0.3	-14.7	7.8	-7.2
	$C_{33}(GPa)$	36.5^{j}	38.3	1.8	41.0	4.5	1082.5	1046.0
	C_{44} (GPa)	4.5 ^j	293.4	288.9	0.1	-4.4	4.9	0.4
	Percent error	-	-	817.0	-	29.0	-	25247
	Percent error (except C ₄₄)			16.6		19.1		28854

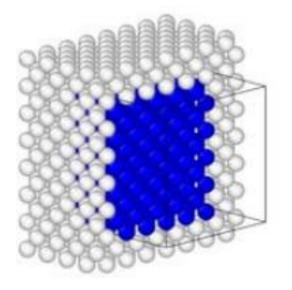
Detail in Mun et. al., J. Phys. Chem. A 2017

Outline

- 1. Motivation
- 2. MEAM with bond order (MEAM-BO)
 - 1. Equations in detail
 - 2. Prediction comparison with other force-fields (REBO and ReaxFF)

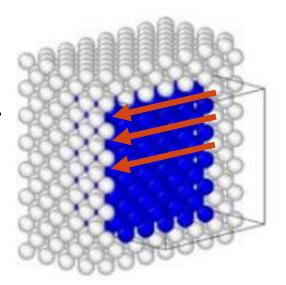

3. Implementation of MEAM-BO in LAMMPS

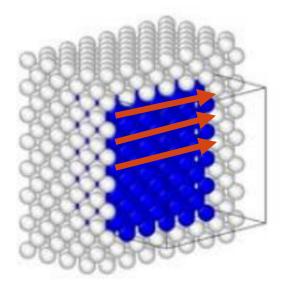
4. Summary and future works


MEAM-BO in LAMMPS

- Written in C++ based on meam/c (5Jun2019 version)
- Can run in parallel through Message Passing Interface (MPI) thanks to LAMMPS communication functions
- New variables such as counting factors and their derivatives are added to the buffer array for the communication between the atoms in the local and the ghost region
- Challenges
 - Complex form of derivatives due to the bond center concept
 - Redundant calculations on ghost atoms due to the necessary pair terms between (local+ghost) atoms and their full neighbors

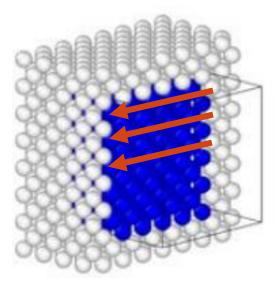
[1]ARL-TR-8213

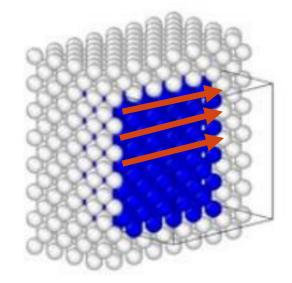

8 sub-domain


Blue: local atoms White: ghost atoms

MEAM calculation procedure

- 1. Get screening between local atoms and their half neighbors
- 2. Get density terms
- 3. Reverse communication (ghost->local, sum)
- 4. Get derivatives for force calculation
- 5. Forward communication (local->ghost, copy)
- 6. Energy calculation
- 7. Force calculation

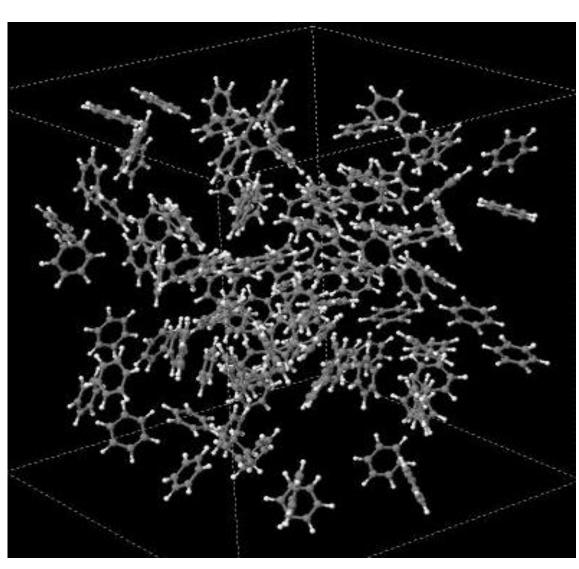

Reverse comm


Forward comm

MEAM-BO calculation procedure

- 1. Get screening between <u>local+ghost</u> atoms and their full neighbors
- 2. Get density terms for local atoms
- 3. Determine bonds between local atoms and their full neighbors
- 4. If any bond exists
 - 4.1. Build a neighbor list of bonds by merging the neighbors
 - 4.2. Get screening for each bond
- 5. Reverse communication (ghost->local, sum)
- 6. Get derivatives for force calculation
- 7. If any bond exists
 - 7.1. Get counting factors for each atom and each bond
 - 7.2. Get derivatives for force due to bond order (<u>local+ghost</u>)
- 8. Forward communication (local->ghost, copy)
- 9. Energy calculation (Energy due to bond order)
- 10. Force calculation (Force due to bond order)

Reverse comm



Forward comm

CPU cost of various force-field relative to MEAM/C

- Bulk benzene (1200 atoms)
- MEAM/C: 1.0
- MEAM/Fortran: 1.1
- AIREBO: 1.0
- MEAM-BO (no bond params): 1.01
- MEAM-BO*: 5.3
- ReaxFF/C: 8.6

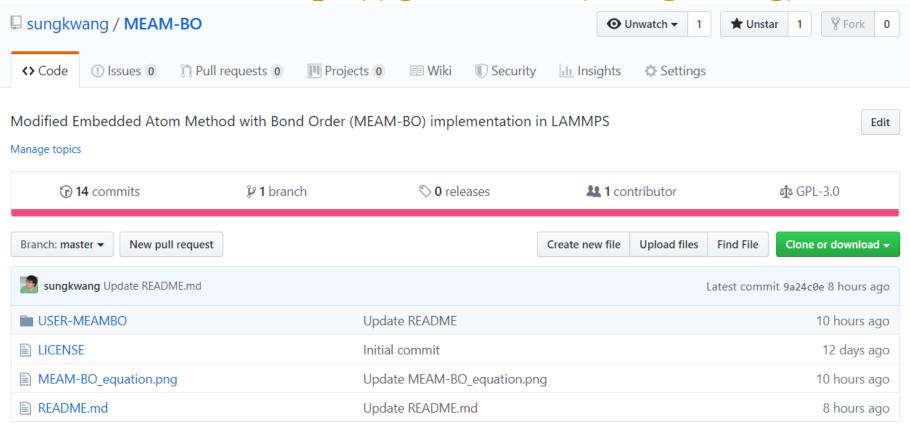
^{*} Can/will be improved up-to ~ 2.0 observed in the inhouse serial code

How to use MEAM-BO in LAMMPS

• Input syntax is similar to MEAM/C

```
pair_style meambo
pair_coeff * * param1 C H param2 el1 C H bond_param
```

- New adjustable parameters
 - 3 per element in param2 file
 - 20/11 bond parameters per double/triple bond, respectively
- Can run original MEAM too!


```
pair_coeff * * param1 C H param2 el1 C H NULL
```

Summary and future work

- MEAM-BO: A new formalism for bond order has been added to the existing MEAM formalism to handle unsaturated bonds in hydrocarbons
- The results show that the properties of saturated and unsaturated hydrocarbons are comparable to those of the other reactive potentials and are reasonably close to the experimental data/first principles calculations.
- Can run in parallel
- Can run with the MEAM parameters in literatures with minimal modifications
- No bond parameters will run MEAM (with <1% extra computational cost)
- Future work
 - Performance optimization related to full neighbor operations
 - Generalized vdW interaction function (DFT-D3) implementation in LAMMPS
 - Improved bond order (*BO*) term calculation that consists of different element pair such as C-O and O-N
 - Parameterization tool for MEAM-BO parameters.

Question?

- Thank you for your attention!
- sungkwan@cavs.msstate.edu
- Code available at https://github.com/sungkwang/MEAM-BO

