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Currently, half  of  the top ten supercomputers use NVIDIA GPUs, 
one more has Intel Xeon Phi (many-core) accelerators, according to 
the June 2019 Top500 List (https://www.top500.org)
In the future, other large supercomputers will have accelerators or 
non-conventional hardware (NERSC Perlmutter—NVIDIA GPUs, 
ANL Aurora—Intel Xe, ORNL Frontier—AMD GPUs)
Special code (beyond regular C++ and MPI in LAMMPS) is required 
to run well on GPUs and many-core CPUs (e.g. CUDA, OpenMP;  
likely true for future hardware as well
Hardware and corresponding programming languages are ever 
changing, how to keep LAMMPS up to date?
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Kokkos Performance Portability Library

Kokkos is an abstraction layer between programmer and next-generation 
platforms

Allows the same LAMMPS C++ code to run on multiple hardware (GPU, 
Xeon Phi, etc.)

Kokkos consists of  two main parts:
1. Parallel dispatch—threaded kernels are launched and mapped onto 

backend languages such as CUDA or OpenMP
2. Kokkos views—polymorphic memory layouts that can be optimized for 

a specific hardware

Used on top of  existing MPI parallelization (MPI + X)

Open-source, can be downloaded at https://github.com/kokkos/kokkos

In a nutshell, the goal of  Kokkos is to future-proof  LAMMPS to allow it 
to run on future hardware without total re-write (i.e. change Kokkos
library for new hardware, not LAMMMPS)
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LAMMPS KOKKOS Package

Optional add-on package in LAMMPS
Developed by Stan Moore, Christian Trott, and others
Goal is that everything in LAMMPS (pair, fixes, computes, etc.) runs 
on the GPU , with minimal data transfer from GPU to CPU if  
possible
Different than the GPU package, which only runs the pair-style and 
a few other computations on the GPU
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LAMMPS KOKKOS Package

8 atom styles: angle, atomic, bond, charge, dpd, full, molecular, sphere (along with hybrid)

44 pair styles: buck/coul/cut, buck/coul/long, buck, coul/cut, coul/debye, coul/dsf, 
coul/long, coul/wolf, dpd/fdt/energy, eam/alloy, eam/fs, eam, exp6/rx, gran/hooke/history, 
hybrid/overlay, lj/charmm/coul/charmm/implicit, lj/charmm/coul/charmm, 
lj/charmm/coul/long, lj/class2/coul/cut, lj/class2/coul/long, lj/class2, lj/cut/coul/cut, 
lj/cut/coul/debye, lj/cut/coul/dsf, lj/cut/coul/long, lj/cut, lj/expand, 
lj/gromacs/coul/gromacs, lj/gromacs, lj/sdk, morse, multi/lucy/rx, reaxc, snap, sw, table, 
table/rx, tersoff, tersoff/mod, tersoff/zbl, vashishta, yukawa, zbl

22 fix styles: deform, dpd/energy, enforce2d, eos/table/rx, freeze, gravity, langevin, 
momentum, neigh/history, nph, npt, nve, nve/sphere, nvt, property/atom, qeq/reax, 
reaxc/bonds, reaxc/species, rx, setforce, shardlow, wall/lj93, wall/reflect

1 compute style: temp

3 bond styles: class2, fene, harmonic

4 angle styles: charmm, class2, cosine, harmonic

3 dihedral styles: charmm, class2, opls

2 improper style: class2, harmonic

1 kspace style: pppm
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Compiling and Running KOKKOS Package

Kokkos library is already included with LAMMPS, no need to 
download:
◦ In lammps/src directory, “make yes-kokkos”
◦ Build with /src/MAKE/OPTIONS/Makefile.kokkos_omp or 

Makefile.kokkos_cuda_mpi
◦Must use a c++11 compatible compiler (gcc 4.7.2 or higher, intel 14.0 or 

higher, CUDA 7.5 or higher)
◦Also CMake option, see docs

No changes to input script needed, just add a few command 
line args:
◦Run with 4 MPI tasks and 4 GPUs: “mpiexec -np 4 ./lmp_exe -in in.lj -k 

on g 4 -sf  kk”
◦Run with 4 OpenMP threads: “./lmp_exe -in in.lj -k on t 4 –sf  kk”

See Kokkos docs: 
https://lammps.sandia.gov/doc/Speed_kokkos.html
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Recent Performance Work

2x improvement of  small Lennard-Jones systems (~1000 atoms) on a 
single V100 GPU

5x improvement of  SNAP potential on V100 GPUs (regular CPU version 
is also over 2x faster on CPUs than before)

2x improvement of  PPPM long-range electrostatics on a V100 GPU (to 
be released soon)

Improved OpenMP threading performance by adding data duplication 
option (helped several pair styles, from LJ to ReaxFF)
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Performance comparison with GPU package

Double-precision only

Kokkos uses special fused MPI comm kernel when running on a single GPU

Performance penalty for moving atom data between GPU and CPU

Integrator is running serially on CPU
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Multiple MPI ranks per GPU

MUST use CUDA MPS with multiple MPI ranks per GPU to get good performance
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Two MPI ranks

Higher overhead for Kokkos due to latency of  launching multiple kernels to pack 
communication buffers
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Performance comparison with GPU package

Double-precision only

Using more atoms/GPU probably will probably have different behavior
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Performance comparison with GPU package

Double-precision only

Full Summit node

Using pinned memory may help Kokkos with integrator and comm on host CPU
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ReaxFF

3 versions in LAMMPS: 
◦ USER-REAXC
◦ KOKKOS
◦ USER-OMP

KOKKOS CUDA version can run on NVIDIA GPUs

KOKKOS version more memory robust, should be used if  getting memory errors, 
or with fix GCMC
KOKKOS MPI-only version faster than USER-REAXC package, at least in some 
cases

USER-OMP version probably a little better for OpenMP on CPUs (need to 
benchmark performance)
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Limitations of the Kokkos package

If  a style isn’t in the KOKKOS package, it won’t be accelerated. Also 
may need to transfer atom data back and forth between CPU and 
GPU every timestep, which reduces performance

USER-INTEL, USER-OMP, and OPT packages can give better 
vectorization on Intel hardware leading to better performance

GPU and USER-INTEL packages support single and mixed 
precision, KOKKOS package only supports double precision (but 
working on fixing this soon)
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Conclusions

Computer hardware is becoming more complicated, requiring special 
code to run well
Kokkos library: goal is performance portability for current and 
future hardware

LAMMPS KOKKOS package allows LAMMPS to run on NVIDIA 
GPUs and Intel many-core CPUs, and will also support future 
supercomputers

Give KOKKOS package a try, post questions or issues to the 
LAMMPS mail list
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