
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

LAMMPS KOKKOS Package:
The quest for performance
portable MD

Stan Moore

2019 LAMMPS Workshop

Albuquerque, NM

1

Currently, half of the top ten supercomputers use NVIDIA GPUs,
one more has Intel Xeon Phi (many-core) accelerators, according to
the June 2019 Top500 List (https://www.top500.org)
In the future, other large supercomputers will have accelerators or
non-conventional hardware (NERSC Perlmutter—NVIDIA GPUs,
ANL Aurora—Intel Xe, ORNL Frontier—AMD GPUs)
Special code (beyond regular C++ and MPI in LAMMPS) is required
to run well on GPUs and many-core CPUs (e.g. CUDA, OpenMP;
likely true for future hardware as well
Hardware and corresponding programming languages are ever
changing, how to keep LAMMPS up to date?

Supercomputer Hardware Trends2

http://www.nvidia.com/object/tesla-p100.html

https://www.top500.org/

Kokkos Performance Portability Library

Kokkos is an abstraction layer between programmer and next-generation
platforms

Allows the same LAMMPS C++ code to run on multiple hardware (GPU,
Xeon Phi, etc.)

Kokkos consists of two main parts:
1. Parallel dispatch—threaded kernels are launched and mapped onto

backend languages such as CUDA or OpenMP
2. Kokkos views—polymorphic memory layouts that can be optimized for

a specific hardware

Used on top of existing MPI parallelization (MPI + X)

Open-source, can be downloaded at https://github.com/kokkos/kokkos

In a nutshell, the goal of Kokkos is to future-proof LAMMPS to allow it
to run on future hardware without total re-write (i.e. change Kokkos
library for new hardware, not LAMMMPS)

3

https://github.com/kokkos/kokkos

LAMMPS KOKKOS Package

Optional add-on package in LAMMPS
Developed by Stan Moore, Christian Trott, and others
Goal is that everything in LAMMPS (pair, fixes, computes, etc.) runs
on the GPU , with minimal data transfer from GPU to CPU if
possible
Different than the GPU package, which only runs the pair-style and
a few other computations on the GPU

4

LAMMPS KOKKOS Package

8 atom styles: angle, atomic, bond, charge, dpd, full, molecular, sphere (along with hybrid)

44 pair styles: buck/coul/cut, buck/coul/long, buck, coul/cut, coul/debye, coul/dsf,
coul/long, coul/wolf, dpd/fdt/energy, eam/alloy, eam/fs, eam, exp6/rx, gran/hooke/history,
hybrid/overlay, lj/charmm/coul/charmm/implicit, lj/charmm/coul/charmm,
lj/charmm/coul/long, lj/class2/coul/cut, lj/class2/coul/long, lj/class2, lj/cut/coul/cut,
lj/cut/coul/debye, lj/cut/coul/dsf, lj/cut/coul/long, lj/cut, lj/expand,
lj/gromacs/coul/gromacs, lj/gromacs, lj/sdk, morse, multi/lucy/rx, reaxc, snap, sw, table,
table/rx, tersoff, tersoff/mod, tersoff/zbl, vashishta, yukawa, zbl

22 fix styles: deform, dpd/energy, enforce2d, eos/table/rx, freeze, gravity, langevin,
momentum, neigh/history, nph, npt, nve, nve/sphere, nvt, property/atom, qeq/reax,
reaxc/bonds, reaxc/species, rx, setforce, shardlow, wall/lj93, wall/reflect

1 compute style: temp

3 bond styles: class2, fene, harmonic

4 angle styles: charmm, class2, cosine, harmonic

3 dihedral styles: charmm, class2, opls

2 improper style: class2, harmonic

1 kspace style: pppm

5

Compiling and Running KOKKOS Package

Kokkos library is already included with LAMMPS, no need to
download:
◦ In lammps/src directory, “make yes-kokkos”
◦ Build with /src/MAKE/OPTIONS/Makefile.kokkos_omp or

Makefile.kokkos_cuda_mpi
◦Must use a c++11 compatible compiler (gcc 4.7.2 or higher, intel 14.0 or

higher, CUDA 7.5 or higher)
◦Also CMake option, see docs

No changes to input script needed, just add a few command
line args:
◦Run with 4 MPI tasks and 4 GPUs: “mpiexec -np 4 ./lmp_exe -in in.lj -k

on g 4 -sf kk”
◦Run with 4 OpenMP threads: “./lmp_exe -in in.lj -k on t 4 –sf kk”

See Kokkos docs:
https://lammps.sandia.gov/doc/Speed_kokkos.html

6

https://lammps.sandia.gov/doc/Speed_kokkos.html

Recent Performance Work

2x improvement of small Lennard-Jones systems (~1000 atoms) on a
single V100 GPU

5x improvement of SNAP potential on V100 GPUs (regular CPU version
is also over 2x faster on CPUs than before)

2x improvement of PPPM long-range electrostatics on a V100 GPU (to
be released soon)

Improved OpenMP threading performance by adding data duplication
option (helped several pair styles, from LJ to ReaxFF)

7

Performance comparison with GPU package

Double-precision only

Kokkos uses special fused MPI comm kernel when running on a single GPU

Performance penalty for moving atom data between GPU and CPU

Integrator is running serially on CPU

8

Better

4

54

104

154

204

254

304

354

404

1000 8000 64000 512000

m
ill

io
n

at
om

-s
te

ps
/s

atoms

Lennard Jones, 1 V100 GPU + 1 MPI rank

Kokkos

Kokkos, fix/nve and comm on CPU

GPU Package

Multiple MPI ranks per GPU

MUST use CUDA MPS with multiple MPI ranks per GPU to get good performance

9

20

40

60

80

100

120

140

1 2 4 8 16

m
ill

io
n

at
om

-s
te

ps
/s

MPI ranks

Lennard-Jones, 1 V100 GPU, 32K atoms

Kokkos, 1 MPI rank/GPU

Kokkos, fix nve and comm on CPU

GPU package
Better

Two MPI ranks

Higher overhead for Kokkos due to latency of launching multiple kernels to pack
communication buffers

10

Better

4

104

204

304

404

504

604

1000 8000 64000 512000

m
ill

io
n

at
om

-st
ep

s/
s

atoms

Lennard Jones, 2 V100 GPUs, 1 MPI rank/GPU

Kokkos

Kokkos, fix/nve and comm on CPU

GPU package

Performance comparison with GPU package

Double-precision only

Using more atoms/GPU probably will probably have different behavior

11

Better

60

70

80

90

100

110

120

130

140

150

160

1 2 4 8 16

m
ill

io
n

at
om

-st
ep

s/
s

MPI ranks/GPU

Lennard-Jones, 2 V100 GPUs, 64K atoms

Kokkos, 1 MPI rank/GPU
Kokkos, fix nve and comm on CPU
GPU package

Performance comparison with GPU package

Double-precision only

Full Summit node

Using pinned memory may help Kokkos with integrator and comm on host CPU

12

20

120

220

320

420

520

620

720

1 2 3 4 5 6 7

m
ill

io
n

at
om

-st
ep

s/
s

MPI ranks/GPU

Lennard-Jones, 6 V100 GPUs, 1M atoms

Kokkos, 1 MPI rank/GPU

Kokkos, fix nve and comm on CPU

GPU package

Better

ReaxFF

3 versions in LAMMPS:
◦ USER-REAXC
◦ KOKKOS
◦ USER-OMP

KOKKOS CUDA version can run on NVIDIA GPUs

KOKKOS version more memory robust, should be used if getting memory errors,
or with fix GCMC
KOKKOS MPI-only version faster than USER-REAXC package, at least in some
cases

USER-OMP version probably a little better for OpenMP on CPUs (need to
benchmark performance)

13

Limitations of the Kokkos package

If a style isn’t in the KOKKOS package, it won’t be accelerated. Also
may need to transfer atom data back and forth between CPU and
GPU every timestep, which reduces performance

USER-INTEL, USER-OMP, and OPT packages can give better
vectorization on Intel hardware leading to better performance

GPU and USER-INTEL packages support single and mixed
precision, KOKKOS package only supports double precision (but
working on fixing this soon)

14

Conclusions

Computer hardware is becoming more complicated, requiring special
code to run well
Kokkos library: goal is performance portability for current and
future hardware

LAMMPS KOKKOS package allows LAMMPS to run on NVIDIA
GPUs and Intel many-core CPUs, and will also support future
supercomputers

Give KOKKOS package a try, post questions or issues to the
LAMMPS mail list

15

