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Scale Challenge in Computational Materials Science

Length Scale

AccuracyTransferability

calassical
potential

First principles methods

Bridging the 10-10 → 10-6 m 
or 10-12 → 10-6  sec scales in 
a manner that retains 
transferability and 
accuracy, and is 
scalable.

Time Scale

Atomic vibrations<ps

ns

µs

Ion dynamics

Reaction dynamics

ms

Can we machine-learn our way to a >106 

speed up relative to DFT with minimal/no 
loss in accuracy?
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General procedure

Sample a sufficiently 
large dataset

Describe local 
environment

Learn relationship 
between features and 

energy, force, etc. 

OQMD

Open databases

DIY

q Requirements
• Invariance to rotation, 

reflection, translation, 
and permutation

• Uniqueness
• Differentiability

q Examples:
• Coulomb matrix
• Symmetry functions
• Bispectrum
• Smooth overlap of

atomic positions
• Fragment descriptors
• …

q Linear regression
q LASSO
q Kernel ridge regression
q Random forest
q SVMs
q Neural networks
q ….
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Spectral neighbor analysis potential 
(SNAP)
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A many-body atomic environment descriptor: 
bispectrum coefficients
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𝒘𝒂𝒕𝒐𝒎 distinguishes species

𝑹𝒄𝒂𝒕𝒐𝒎 radius cutoff
𝑗)*+ order of Bispectrum, set to 3.
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A many-body atomic environment descriptor: 
bispectrum coefficients
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Spectral neighbor analysis potential 
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Extending the SNAP formalism
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Optimization unit
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(FS) energies are given by the following equation:

gGB=FS ¼
EGB=FS " Ebulk=atom # nGB=FS

2# AGB=FS
(1)

where gGB/FS is the GB/FS energy, EGB/FS is the energy of the supercell
containing the GB or FS, and Ebulk/atom is bulk energy per atom in the
Mo bcc structure, AGB/FS, is the cross-section area and nGB/FS is the
number of atoms in the GB/FS supercell.

The propensity of the dopant to segregate into the GB/FS is

characterized by its segregation energy EGB=FSseg , which is given by the
relative difference in energy between the dopant in the GB/FS and
in the bulk. The segregation energy of a dopant X can be computed
using the following equation:

EGB=FSseg ¼
!
EGB=FSþX " EGB=FS

"
" ðEbulkþX " EbulkÞ (2)

where EGB/FS/bulkþX is the energy for the doped GB/FS/bulk structure
and EGB/FS/bulk is the energy of the undoped GB/FS/bulk structure. In
this work, all doped structures were obtained by substituting a
single Mo atom with a dopant atom in one of the equivalent sites
giving a dopant area density (GGB) of 0.020 Å"2 and 0.012 Å"2 for
the twist and tilt GBs respectively. The atomic positions were then
relaxed with the lattice parameters fixed at those of the fully-
relaxed undoped structures. Interstitial doping was not investi-
gated. A negative EGB=FSseg indicates dopant segregation into the GB/FS
is energetically favorable, in line with the convention used in
literature [23e26].

From EGBseg and EFSseg , the strengthening energy, ESE can be obtained
from the following equation

ESE ¼ EGBseg " EFSseg ¼ ðEGBþX " EGBÞ " ðEFSþX " EFSÞ (3)

A positive/negative ESE indicates that the grain boundary is
weakened/strengthened by the dopant. It should be noted that ESE
is equivalent to the difference in work of fracture [wsep ¼ gGB"2gFS]
[38] between the doped and undoped grain boundaries. In this

work, only one dopant area density was investigated for the twist
and tilt GBs, though the coverage of the dopant on the GB/FS would
no doubt have an effect on the work of separation [38]. A detailed
discussion of these measures can be found in Ref. [25].

2.4. Empirical continuum models

In this work, we compared the DFT predictions with two
empirical GB thermodynamic models: the McLean model [28] and
the Miedema model [27]. The McLean model only considers strain
energy of the solute, which in this case is derived from the Friedel
model [39], as the major factor in GB segregation, and the segre-
gation enthalpy (DHseg) is given by the following equation:

DHseg
el ¼ 24pK MoG Xr Mor Xðr Mo " r XÞ2

3K Mor Mo þ 4G Xr X
(4)

where K and G are the bulk modulus and shear modulus, respec-
tively, the subscript X denoting the dopant, and r is the atomic
radius.

The Miedema model posits that the bonding energy differences
between dopant and bulk atoms contribute to GB segregation
enthalpy, with DHseg given by the following equation:

DHseg ¼ "0:71#
1
3
# n#

!
" DH Mo

sol c0g
S
MoV

2=3
Mo þ c0gSXV

2=3
X

"

þ DEel
(5)

where n is the ratio of lost bonds at GB core, c0gSV2/3 represents the
molar surface enthalpy of pure metal (Mo or X) by the definition of
Miedema, DH Mo

sol is the enthalpy of solution of X in Mo and DEel is
the solute strain energy.

Because the empirical continuum models assume that changes
in volume and entropy due to segregation are negligible, segrega-
tion energy EGBseg is approximately equal to segregation enthalpy, we
will use the former term in the remainder of this article for

Fig. 2. Structure model for Mo S5(100) twist GB. Coincident sites are labeled with the number 0, while non-coincident sites are labeled as 1.

R. Tran et al. / Acta Materialia 117 (2016) 91e99 93
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FIG. 1. Fitting work flow for the binary alloy SNAP model. The left panel shows one optimization unit developed by Chen et al. [12],
which optimizes both the model parameters and the hyperparameters with respect to DFT calculated energies, forces, and elastic constants.
The right panel shows the work flow for the binary alloy system. α denotes the parameters (hyperparameters) for the bispectrum calculations,
whereas β denotes the model parameters.

effective and robust potential. Our training data can be divided
into five categories:

(1) Undistorted ground-state structures for Ni, Mo, and the
two binary intermetallics Ni3Mo and Ni4Mo.

(2) Distorted structures constructed by applying strains
of −10% to 10% at 1% intervals to a bulk supercell in six
different modes as described in Ref. [39].

(3) Surface structures of elemental structures obtained
from the Crystalium database [40], which include the surface
structures with Miller indices up to three.

(4) Snapshots from NV T ab initio molecular dynamics
(AIMD) simulations of the bulk supercell at 300, 1000, and
3000 K at the equilibrium 0-K volume. In addition, snapshots
were also obtained from NV T AIMD simulations at 300 K
at 90% and 110% of the equilibrium 0-K volume. Forty snap-
shots were extracted from each AIMD simulation at intervals
of 0.1 ps.

(5) Alloy structures constructed by partial substitution of
supercells of the bulk fcc Ni with Mo and the bulk bcc Mo
with Ni. Compositions of the form NixMo1−x were generated
with x ranging from 0 to 100 at. % at intervals of 12.5 at. %.

The supercells used for the distorted structures and AIMD
simulations are 3 × 3 × 3 conventional cells for all elemental
systems, 3 × 3 × 2 for Ni3Mo, and 2 × 2 × 3 for Ni4Mo. The
Mo-substituted Ni fcc alloy (NiMo) structures were gener-
ated in three steps. First, a 2 × 2 × 2 supercell of Ni was
doped with 1–5, 9, 13, 17, 21, 25, 29, 30–32 Mo atoms,
respectively. Second, for each doped structure, we performed
a structure enumeration [41] to generate all symmetrically
distinct structures from which up to 100 random structures
are selected. Third, we performed a structure relaxation for
each selected structure. Both the unrelaxed and the relaxed
structures were included in our data set. The Ni-substituted
Mo bcc alloy (MoNi) structures were constructed using the
same procedure with a 2 × 2 × 2 supercell. In addition, since
the bcc conventional cell contains half the number of atoms of

the fcc conventional cell, we also generated low-concentration
Ni-substituted Mo by doping a 3 × 3 × 3 Mo supercell with
one to four Ni atoms.

D. DFT calculations

All DFT calculations were performed using the Perdew-
Burke-Ernzerhof [42] exchange-correlation functional as im-
plemented in the Vienna ab initio simulation package (VASP)
[43] within the projector augmented-wave approach [44]. The
kinetic-energy cutoff was set to 520 eV, and the k-point
density was at least 3000 per reciprocal atom. Energies and
forces were converged to within 10−5 eV and 0.02 eV/Å,
respectively. The AIMD simulations were performed with a
single ! k point and were nonspin polarized. However, the
energy and force calculations on the snapshots were per-
formed using the same parameters as the rest of the data. All
structure manipulations and analyses of DFT computations
were carried out using the Python Materials Genomics [45]
library, and the automation of the calculations was carried out
using the FIREWORKS software [46].

E. Melting points and phase diagram

The melting temperatures Tm were calculated using the
solid-liquid coexistence approach [47]. MD simulations were
performed using the 30 × 15 × 15 bcc (13 500 atoms) and
30 × 10 × 10 (12 000 atoms) fcc supercells under zero pres-
sure at different temperatures. The time step was set to 1 fs,
and simulations were carried out for at least 100 ps. Tm was
identified when the initial solid and liquid phases were at
equilibrium (no interface motion).

With the fully equilibrated solid-liquid structures at the
melting points, we conducted hybrid Monte Carlo (MC)/MD
simulations to calculate the solidus and liquidus lines at dif-
ferent temperatures. At each temperature below Tm, the global

094104-3
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Workflow - alloy system
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FIG. 1. Fitting work flow for the binary alloy SNAP model. The left panel shows one optimization unit developed by Chen et al. [12],
which optimizes both the model parameters and the hyperparameters with respect to DFT calculated energies, forces, and elastic constants.
The right panel shows the work flow for the binary alloy system. α denotes the parameters (hyperparameters) for the bispectrum calculations,
whereas β denotes the model parameters.

effective and robust potential. Our training data can be divided
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(1) Undistorted ground-state structures for Ni, Mo, and the
two binary intermetallics Ni3Mo and Ni4Mo.

(2) Distorted structures constructed by applying strains
of −10% to 10% at 1% intervals to a bulk supercell in six
different modes as described in Ref. [39].

(3) Surface structures of elemental structures obtained
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structures with Miller indices up to three.
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were also obtained from NV T AIMD simulations at 300 K
at 90% and 110% of the equilibrium 0-K volume. Forty snap-
shots were extracted from each AIMD simulation at intervals
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(5) Alloy structures constructed by partial substitution of
supercells of the bulk fcc Ni with Mo and the bulk bcc Mo
with Ni. Compositions of the form NixMo1−x were generated
with x ranging from 0 to 100 at. % at intervals of 12.5 at. %.

The supercells used for the distorted structures and AIMD
simulations are 3 × 3 × 3 conventional cells for all elemental
systems, 3 × 3 × 2 for Ni3Mo, and 2 × 2 × 3 for Ni4Mo. The
Mo-substituted Ni fcc alloy (NiMo) structures were gener-
ated in three steps. First, a 2 × 2 × 2 supercell of Ni was
doped with 1–5, 9, 13, 17, 21, 25, 29, 30–32 Mo atoms,
respectively. Second, for each doped structure, we performed
a structure enumeration [41] to generate all symmetrically
distinct structures from which up to 100 random structures
are selected. Third, we performed a structure relaxation for
each selected structure. Both the unrelaxed and the relaxed
structures were included in our data set. The Ni-substituted
Mo bcc alloy (MoNi) structures were constructed using the
same procedure with a 2 × 2 × 2 supercell. In addition, since
the bcc conventional cell contains half the number of atoms of

the fcc conventional cell, we also generated low-concentration
Ni-substituted Mo by doping a 3 × 3 × 3 Mo supercell with
one to four Ni atoms.

D. DFT calculations

All DFT calculations were performed using the Perdew-
Burke-Ernzerhof [42] exchange-correlation functional as im-
plemented in the Vienna ab initio simulation package (VASP)
[43] within the projector augmented-wave approach [44]. The
kinetic-energy cutoff was set to 520 eV, and the k-point
density was at least 3000 per reciprocal atom. Energies and
forces were converged to within 10−5 eV and 0.02 eV/Å,
respectively. The AIMD simulations were performed with a
single ! k point and were nonspin polarized. However, the
energy and force calculations on the snapshots were per-
formed using the same parameters as the rest of the data. All
structure manipulations and analyses of DFT computations
were carried out using the Python Materials Genomics [45]
library, and the automation of the calculations was carried out
using the FIREWORKS software [46].

E. Melting points and phase diagram

The melting temperatures Tm were calculated using the
solid-liquid coexistence approach [47]. MD simulations were
performed using the 30 × 15 × 15 bcc (13 500 atoms) and
30 × 10 × 10 (12 000 atoms) fcc supercells under zero pres-
sure at different temperatures. The time step was set to 1 fs,
and simulations were carried out for at least 100 ps. Tm was
identified when the initial solid and liquid phases were at
equilibrium (no interface motion).

With the fully equilibrated solid-liquid structures at the
melting points, we conducted hybrid Monte Carlo (MC)/MD
simulations to calculate the solidus and liquidus lines at dif-
ferent temperatures. At each temperature below Tm, the global
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Ni-Mo alloy: SNAP model performance
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qSNAP significantly outperforms 
in binary and bcc Mo for energy.
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qEAM fails in binary bulk systems for 
elastic constants.
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Ni-Mo alloy: Equation of State
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FIG. 5. Energy vs volume curves of a conventional Ni3Mo (left panel) and Ni4Mo (right panel) cell for the DFT, SNAP, and EAM models.
The energy at the equilibrium volume has been set as the zero reference.

Ni-Mo SNAP and EAM models will focus on qualitative
trends (especially in the binary alloys and intermetallics)
rather than quantitative comparisons.

We may observe that the binary Ni-Mo SNAP model
significantly outperforms the binary Ni-Mo EAM model
across almost all data sets with the exception of a larger MAE
in predicted forces for pure Ni. In particular, the MAEs in
the predicted energies for the binary phases (Ni4Mo, Ni3Mo,
and the Mo-doped fcc Ni) are especially large for the EAM
model relative to the end member elemental phases, whereas
those for the binary Ni-Mo SNAP are much smaller and
comparable for both binary as well as elemental phases.
This indicates a clear bias for the elemental phases in the
construction of the binary EAM potential. However, relative
to the elemental Mo and Ni SNAP models, the binary Ni-Mo
SNAP model clearly sacrifices accuracy on the end member
elements with somewhat larger errors in predicted energies
and forces for both bcc Mo and fcc Ni. We attribute this
decrease in accuracy to the substantially more complex and
diverse training structures when fitting the binary potential
compared with the elemental potential.

2. Materials properties

Table III compares the elastic properties computed by the
elemental and binary SNAP models, the EAM model, DFT,
and experiments [58,61]. Again, we observe that the binary

Ni-Mo SNAP model generally outperforms the binary EAM
model in the prediction of the elastic constants, bulk and
shear moduli, and Poisson’s ratio for the binary intermetallics
Ni3Mo and Ni4Mo. The binary EAM model performs espe-
cially poorly in this regard with absolute percentage errors
exceeding 100% in some instances (e.g., shear modulus and
Poisson’s ratio for Ni4Mo). Compared to the elemental SNAP
models, the binary Ni-Mo SNAP model does suffer a slight
decrease in prediction accuracy but still manages to retain
better agreement with DFT compared with EAM.

Figure 5 displays the equation of state curves constructed
using the DFT, SNAP, and EAM models for the binary
compounds Ni3Mo and Ni4Mo. We observe that for both
Ni3Mo and Ni4Mo, the SNAP curve overlaps with DFT for
volume changes in the range of −21% to 10% from the
equilibrium volume but begins to slightly overestimate the
energies with volume expansions beyond 10%. The EAM
potential completely fails in the equation of state predic-
tion for binary compounds. It significantly underestimates
the energies at both tensile and compressive strains. Similar
conclusions can be made from the prediction of the phonon
dispersion curves—the binary SNAP model produces phonon
dispersion curves that are in excellent agreement with DFT for
both Ni3Mo and Ni4Mo, whereas the EAM potential produces
curves with imaginary frequencies, in contradiction to DFT
(see Fig. S4 in the Supplemental Material [52]).

FIG. 6. Plots of the (a) 0-K Ni-Mo pseudobinary formation energy diagram calculated using DFT, SNAP, and EAM, and the high-
temperature Ni-Mo phase diagram normalized by the melting temperature for (b) the Mo-rich domain and (c) the Ni-rich domain from
experiments [62], CALPHAD, SNAP, and EAM models.

094104-7

The EAM potential completely fails in the equation of state 
prediction for binary compounds. 
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Ni-Mo alloy: Phone Spectra

8/29/19 13

The EAM potential completely fails in the phonon spectra 
prediction for binary compounds. 

Phonon dispersion curves for binary compounds

Figure S4: Phonon dispersion curves of DFT, SNAP, and EAM for Ni4Mo (top panel) and

Ni3Mo (bottom panel).
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Ni-Mo phase diagram
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EAM completely fails to 
reproduce Ni-Mo phase 
diagram
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Application: Investigating Hall-Petch strengthening 
in Ni-Mo
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q ~20,000 to ~455,000 atoms
q Uniaxially strained with a strain rate of 5×108 s-1

q SNAP reproduces the (inverse) Hall-Petch 
relationship, consistent with experiment[1].

[1]  Hu et al. Nature, 2017, 355, 1292
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Electrostatic SNAP (eSNAP) for ionic systems

q Local environment

q Electrostatic interaction

q eSNAP

q Nuclear repulsion - Ziegler-Biersack-Littmark (ZBL)

8/29/19 17
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• Formal charge
• Ewald summation

𝛾 - screening parameter

Deng et al. npj Comp Mat. 2019, 5, 75
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Generation of training data for Li3N

Initial configuration pool
qUnit cells with different lattice 

constant a and c
qUnit cells with lattice distortions 

under different strains
qSnapshots (3x3x3 supercells) 

taken from AIMD simulated 
below 1.2Tm (400 ~ 1200 K)

Static DFT to calculate 
reference energy and force

Distorted 
unit cells

AIMD 
snapshots

Natoms 4 108

Nconfigs 109 1000

wE 103 1

wF 0 10-3

8/29/19 18

α-Li3N
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Grid search for hyperparameters of SNAP
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<latexit sha1_base64="x/WYhKZF6rjDSSUmUFg8BsWTvU0="></latexit><latexit sha1_base64="x/WYhKZF6rjDSSUmUFg8BsWTvU0="></latexit><latexit sha1_base64="x/WYhKZF6rjDSSUmUFg8BsWTvU0=">AAACZnicbVFNS8NAEN3E7/hVreLBy2BRW8SSiKCCQtGLRxWrQlPCZruxi5sPdjdKCfFHevPuxX/hpg2i1oFl37x5w8y+9RPOpLLtd8OcmJyanpmds+YXFpeWKyurdzJOBaFtEvNYPPhYUs4i2lZMcfqQCIpDn9N7/+miqN8/UyFZHN2qQUK7IX6MWMAIVpryKq+u6Mceq7shVn0/yETegDNwe5Qr/Ivc2QNXpiEEHqkLL2NsN2+86Hs3HxPDPnwnI6Xud12rTGDnFG5G0PIqNbtpDwPGgVOCGirjyqu8ub2YpCGNFOFYyo5jJ6qbYaEY4TS33FTSBJMn/Eg7GkY4pLKbDX3KYVszPQhioU+kYMj+7MhwKOUg9LWy2F/+rRXkf7VOqoLjbsaiJFU0IqNBQcpBxVCYDj0mKFF8oAEmguldgfSxwETprylMcP4+eRy0D5onTef6sNY6L92YRZtoC9WRg45QC12iK9RGBH0YllE11oxPc9lcNzdGUtMoe6roV5jwBVDJtqU=</latexit><latexit sha1_base64="x/WYhKZF6rjDSSUmUFg8BsWTvU0="></latexit>

w R (Å)

Li 0.1 2.0

N -0.1 2.8
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Initial	training	
dataset

Train	eSNAP	on		
current	training	set

Run	MD	with	eSNAP

Run	DFT	calculations	on	
test	configurations,	

completing	test	dataset

MAEtest	<	
1.5MAEtrain

Final	eSNAP

Merge	test	set	into	
training	set		

for	next	iteration

No

Yes

Collect		
test	configurations	from	

MD	trajectories

qSystematically improves 
the predictions on 
energy and force for 
MD simulations

qLeverages the benefit 
gained by adding more 
training instances and 
the associated costs for 
performing more DFT 
calculations

8/29/19

Training/test iteration
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(a) (b)

(c) (d)

q The iteration terminates 
with the training data 
expanded for once.

q eSNAP model has 
successfully captured 
the fundamental 
relationship between 
atomic environment and 
energy/force.

8/29/19

Energy and force 
prediction from eSNAP

Coulomb-Buckingham:
Walker et al. Philos. Mag. A
1981, 43 (2), 265–272.

On the 
initial 
training 
dataset
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Structural property 
calculations using eSNAP

DFT eSNAP Coul-
Buck

Exp.

a (Å) 3.641 3.641 3.528 3.648

c (Å) 3.874 3.872 3.628 3.875

c11 (GPa) 123 116 165 114

c33 (GPa) 137 144 193 118

c44 (GPa) 17 17 19 17

c66 (GPa) 48 39 53 38

Ef, V2 (eV) 0.60 0.64 0.44

Ef, V1 (eV) 0.51 0.63 0.46

8/29/19 22

Coul-Buck: Walker et al. Philos. Mag. A 1981, 43 (2), 265–272.
Exp: 
Rabenau et al. J. Less-Common Met. 1976, 50 (1), 155–159.
Kress et al. Phys. Rev. B 1980, 22 (10), 4620–4625.
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Bulk diffusion

8/29/19

q Simulation box contains 
4000 atoms (10x10x10 
supercell)

q MD simulations performed 
from 600 to 1000 K in an 
NVT ensemble for 1ns

23

Ea (eV) 𝜎RT (mS/cm)

ab c total ab c total

eSNAP 0.255 0.327 0.269 29.6 2.32 17.3

Exp. 0.290 0.490 1.20 0.01
Exp.:Alpen et al. Appl. Phys. Lett.

1977, 30 (12), 621–623.

are successfully reproduced with eSNAP MD simulations. The tracer di↵usivities (given by

the slope of the MSD with respect to time) from eSNAP MD (1.48 ⇥ 10�4 cm2/s at 1000

K, 2.35 ⇥ 10�4 cm2/s at 1200 K) are in generally good agreement with those from AIMD

(1.28⇥10�4 cm2/s at 1000 K, 2.16⇥10�4 cm2/s at 1200 K), showing a slight overestimation

of about 15% and 8% at 1000 K and 1200 K, respectively.

Figure 4: (a) Haven ratio and (b) Arrhenius plot for Li charge di↵usivity in bulk ↵-Li3N

obtained from eSNAP MD simulations.

Beyond tracer di↵usivities, the orders of magnitude lower computational cost of the eS-

NAP relative to DFT a↵ords us the capability to compute the charge di↵usivity D�. For

each temperature, 100 independent simulations were performed starting from di↵erent initial

velocities. Di↵usivities were obtained by averaging square displacements over all simulations

at a particular temperature. Figure 4 plots the predicted Haven ratio and Arrhenius plot for

Li3N from eSNAP MD simulations. The activation energies, extrapolated room temperature

conductivities and average Haven ratio across all temperatures are tabulated in Table 3. The

anisotropic di↵usion in ↵-Li3N observed experimentally28,29 is reproduced in many aspects,

including the magnitude of di↵usivity, activation energy and Haven ratio. The higher di↵u-

sivities and lower activation energy in the direction perpendicular to c axis is consistent with

the lower Haven ratio found. The activation energy perpendicular to c axis close to the one

10
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Grain boundary 
diffusion

The presence of GB 
facilitates Li diffusion

D* at 300 K
• GB: 7.09 × 10-8 cm2/s
• Bulk (extrapolated): 

2.24 × 10-8 cm2/s

8/29/19

@ 300 K

GB in parallel 
with xy plane

twist Σ7 [0001]
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Conclusions

ü ML potentials have the potential to 
achieve near-quantum accuracy at a 
much lower cost than DFT with 
linear scaling => Enables science 
that is hitherto inaccessible!

ü Choice of local environment 
description is critical.

ü Multi-component present 
complications, but not 
insurmountable.

X 10-100x more expensive             
than MEAM (can we do         
better?)

8/29/19 25

Length Scale

AccuracyTransferability

classical 
potentials

First principles methods

Time Scale

<ps

ns

µs

ms

SNAP
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Machine learning the potential energy surface

8/29/19 Albuquerque 2019

Local environment descriptors ML approach

the descriptors for these local environments and the ML approach/functional expression used

to map the descriptors to the potential energy. The detailed formalism of all four ML-IAPs

are provided in the Supplementary Information. Here, only a concise summary of the key

concepts and model parameters behind the ML-IAPs in chronological order of development,

is provided to aid the reader in following the remainder of this paper.

1. High-dimensional neural network potential (NNP). The NNP uses atom-centered

symmetry functions (ACSF)39 to represent the atomic local environments and fully con-

nected neural networks to describe the PES with respect to symmetry functions.11,12

A separate neural network is used for each atom. The neural network is defined by

the number of hidden layers and the nodes in each layer, while the descriptor space is

given by the following symmetry functions:

Gatom,rad
i =

NatomX

j 6=i

e�⌘(Rij�Rs)2 · fc(Rij),

Gatom,ang
i = 21�⇣

NatomX

j,k 6=i

(1 + � cos ✓ijk)
⇣ · e�⌘0(R2

ij+R2
ik+R2

jk) · fc(Rij) · fc(Rik) · fc(Rjk),

where Rij is the distance between atom i and neighbor atom j, ⌘ is the width of the

Gaussian and Rs is the position shift over all neighboring atoms within the cuto↵

radius Rc, ⌘0 is the width of the Gaussian basis and ⇣ controls the angular resolution.

fc(Rij) is a cuto↵ function, defined as follows:

fc(Rij) =

8
>><

>>:

0.5 · [cos (⇡Rij

Rc
) + 1], for Rij  Rc

0.0, for Rij > Rc.

These hyperparameters were optimized to minimize the mean absolute errors of en-

ergies and forces for each chemistry. The NNP model has shown great performance

for Si,11 TiO2,
40 water41 and solid-liquid interfaces,42 metal-organic frameworks,43 and

has been extended to incorporate long-range electrostatics for ionic systems such as

4

Atom-centered symmetry 
functions (ACSF)

Moment tensors

Smooth overlap of atomic 
positions (SOAP)

SO4 bispectrum

Polynomial / Linear 
regression

Kernel regression

Neural networks

ZnO44 and Li3PO4.
45

2. Gaussian Approximation Potential (GAP). The GAP calculates the similar-

ity between atomic configurations based on a smooth-overlap of atomic positions

(SOAP)10,46 kernel, which is then used in a Gaussian process model. In SOAP, the

Gaussian-smeared atomic neighbor densities ⇢i(R) are expanded in spherical harmonics

as follows:

⇢i(R) =
X

j

fc(Rij) · exp(� |R � Rij|2

2�2
atom

) =
X

nlm

cnlm gn(R)Ylm(R̂),

The spherical power spectrum vector, which is in turn the square of expansion coe�-

cients,

pn1n2l(Ri) =
lX

m=�l

c⇤n1lmcn2lm,

can be used to construct the SOAP kernel while raised to a positive integer power ⇣

(which is 4 in present case) to accentuate the sensitivity of the kernel,10

K(R,R0) =
X

n1n2l

(pn1n2l(R)pn1n2l(R
0))⇣ ,

In the above equations, �atom is a smoothness controlling the Gaussian smearing, and

nmax and lmax determine the maximum powers for radial components and angular com-

ponents in spherical harmonics expansion, respectively.10 These hyperparameters, as

well as the number of reference atomic configurations used in Gaussian process, are

optimized in the fitting procedure to obtain optimal performance. The GAP has been

developed for transition metals,13,14 main group elements,47–49 diamond semiconduc-

tors50,51 as well as multi-component systems.37

3. Spectral Neighbor Analysis Potential (SNAP). The SNAP uses the coe�cients

of the bispectrum of the atomic neighbor density functions10 as descriptors. In the

5

Behler-Parinello Neural 
Network Potential (NNP)

Moment tensor potential 
(MTP)

Gaussian Approximation 
Potential (GAP)

Spectral Neighbor 
Analysis Potential (SNAP)

ACSF/MTP encodes atomic distances 
and angles.

SOAP/bispectrum encodes atomic 
neighbor density.

Interatomic Potential

26



Standardized workflow for ML-IAP construction 
and evaluation

Pymatgen

Fireworks + VASP

DFT static
Dataset

Elastic deformation Distorted
structures

Surface generation Surface 
structures

Vacancy + AIMD Trajectory
snapshots

(low T, high T) AIMD Trajectory
snapshots

Crystal
structure

property fitting
E
e

e.g. elastic, phonon

· · ·
energy weights

degrees of freedom · · ·
cutoff radius

expansion width

S1

S2

Sn

· · ·

rc

atomic descriptors

local
environment

sites

· · · · · ·

X1(r1j … r1n)
X2(r2k … r2m)

Xn(rnj … rnm)

machine learning
Y =f(X;!)

Y (energy, force, stress)

DFT properties

grid search
evolutionary algorithm

8/29/19 Albuquerque 2019

Available open source on Github: https://github.com/materialsvirtuallab/mlearn

Test systems:
• Fcc Ni
• Fcc Cu
• Bcc Li
• Bcc Mo
• Diamond Ge
• Diamond Si

27
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ML-IAP: Accuracy vs Cost

8/29/19 Albuquerque 2019

NNP

MTPGAP

qSNAPSNAP

M
A

E
 (m

eV
/a

to
m

)

# of degrees of freedom

Te
st

 e
rr

or
 (m

eV
/a

to
m

)

Computational cost s/(MD step   atom)

a

b

Training error

Test error

Jmax = 3

Jmax = 3

2000 kernels20 polynomial powers

hidden layers [16, 16]

GAP reaches 
best accuracy, 
but is the most 
expensive by 
O(102-103)

MTP, NNP, 
qSNAP all lie 
quite close to 
Pareto frontier. 

Mo dataset
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ML-IAP: Training Data Requirements

8/29/19 Albuquerque 2019

Energies Forces

• Data quality is more important than data quantity -
~O(100) structures sufficient to converge

• NNP and qSNAP require much more training data 
than other models.

a b
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ML-IAP: Extrapolability

• The greater the ML complexity (e.g., 
NNP and GAP), the greater the issues 
with extrapolation.

• Linear SNAP performs surprisingly well 
on EOS and polymorph energy 
differences.

8/29/19 Albuquerque 2019

Ni Li Si

Cu Mo Ge

DFT GAP
NNP

MTP
SNAP qSNAP

bcc Ni bcc Cu

fcc Mo fcc Li

wurtzite Si wurtzite Ge
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Where to get the potentials?
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