## Quantum-accurate Force Fields from Machine Learning of Large Materials Data

Xiang-Guo Li, Zhi Deng, Yunxing Zuo, Chi Chen,

Shyue Ping Ong

8/29/19

Albuquerque 2019

UC San Diego Jacobs School of Engineering



#### Scale Challenge in Computational Materials Science



virtual·lab

 $\sim$ 

### General procedure



virtual·lab

 $\sim$ 

# A many-body atomic environment descriptor: bispectrum coefficients





### A many-body atomic environment descriptor: bispectrum coefficients



#### Extending the SNAP formalism



mater∥als virtual·lab 

#### Extending the SNAP formalism



mater∥als virtual·lab

8/29/19

Albuquerque 2019

### **Optimization unit**





<sup>1</sup> Tran et al. Acta Mater. 2016, 117, 91–99 DOI: 10.1016/j.actamat.2016.07.005.
<sup>2</sup> Tran et al. Sci. Data 2016, 3, 160080 DOI: 10.1038/sdata.2016.80.
<sup>3</sup> Jain, A.; Ong, S. P.; et al. APL Mater. 2013, 1 (1), 11002 DOI: 10.1063/1.4812323.

$$\alpha = (R_{cut}^{atom}, w^{atom})$$

Li, X.; Hu, C.; Chen, C.; Deng, Z.; Luo, J.; Ong, S. P. Phys. Rev. B. 2018, 98, 094104.

00

### Workflow - alloy system



Li, X.; Hu, C.; Chen, C.; Deng, Z.; Luo, J.; Ong, S. P. Phys. Rev. B. 2018, 98, 094104.



0

### Ni-Mo alloy: SNAP model performance

mater∥als virtual·lab



SNAP significantly outperforms in binary and bcc Mo for energy.



#### Ni-Mo alloy: property matching



#### EAM fails in binary bulk systems for elastic constants.

mater als

virtual·lab



#### Ni-Mo alloy: Equation of State



The EAM potential completely fails in the equation of state prediction for binary compounds.



### Ni-Mo alloy: Phone Spectra



The EAM potential completely fails in the phonon spectra prediction for binary compounds.



### Ni-Mo phase diagram

Solid-liquid equilibrium



EAM completely fails to reproduce Ni-Mo phase diagram





materlals virtual·lab Albuquerque 2019

# Application: Investigating Hall-Petch strengthening in Ni-Mo



virtual·lab

- □ ~20,000 to ~455,000 atoms
- $\Box$  Uniaxially strained with a strain rate of  $5 \times 10^8$  s<sup>-1</sup>
- □ SNAP reproduces the (inverse) Hall-Petch relationship, consistent with experiment<sup>[1]</sup>.

[1] Hu et al. Nature, **2017**, 355, 1292



Albuquerque 2019

L

#### Extending the SNAP formalism



virtual·lab

8/29/19

#### Electrostatic SNAP (eSNAP) for ionic systems

#### Local environment local environment $E_{\rm SNAP} = \beta_0 N + \beta \sum B_i$ electrostatic interaction **Electrostatic interaction** nuclei repulsion $E_{el} = \frac{q_j q_k}{r}$ • Formal charge • Ewald summation Rii Interatomic distance 🛛 eSNAP $\gamma$ - screening parameter $E_p = \gamma E_{el} + E_{\text{SNAP}}$ $\mathbf{F}_{i} = -\nabla_{i} E_{p} = -\gamma \nabla_{j} E_{el} - F_{j,\text{SNAP}}$

Nuclear repulsion - Ziegler-Biersack-Littmark (ZBL)

Deng et al. npj Comp Mat. 2019, 5, 75



### Generation of training data for Li<sub>3</sub>N

#### Initial configuration pool

- Unit cells with different lattice constant *a* and *c*
- Unit cells with lattice distortions under different strains
- ■Snapshots (3x3x3 supercells) taken from AIMD simulated below 1.27<sub>m</sub> (400 ~ 1200 K)

### Static DFT to calculate reference energy and force



 $\alpha$ -Li<sub>3</sub>N

|                      | Distorted<br>unit cells | AIMD<br>snapshots |
|----------------------|-------------------------|-------------------|
| N <sub>atoms</sub>   | 4                       | 108               |
| N <sub>configs</sub> | 109                     | 1000              |
| w <sub>E</sub>       | 10 <sup>3</sup>         | l.                |
| W <sub>F</sub>       | 0                       | 10 <sup>-3</sup>  |

### Grid search for hyperparameters of SNAP

$$\rho_i(\mathbf{r}) = \delta(\mathbf{r}) + \sum_{ii'} f_c(r_{ii'}) w_{i'} \delta(\mathbf{r} - \mathbf{r}_{ii'})$$
$$r_{ii'} < R_{ii'}$$

|    | w    | <b>R (Å)</b> |
|----|------|--------------|
| Li | 0.1  | 2.0          |
| Ν  | -0.1 | 2.8          |



0

#### Training/test iteration

- Systematically improves the predictions on energy and force for MD simulations
- Leverages the benefit gained by adding more training instances and the associated costs for performing more DFT calculations





# Energy and force prediction from eSNAP

- The iteration terminates with the training data expanded for once.
- eSNAP model has successfully captured the fundamental relationship between atomic environment and energy/force.



mater∥als virtual·lab Albuquerque 2019

# Structural property calculations using eSNAP

|                        | DFT   | e <b>SNAP</b> | Coul-<br>Buck | Exp.  |
|------------------------|-------|---------------|---------------|-------|
| a (Å)                  | 3.641 | 3.641         | 3.528         | 3.648 |
| c (Å)                  | 3.874 | 3.872         | 3.628         | 3.875 |
| c <sub>11</sub> (GPa)  | 123   | 116           | 165           | 114   |
| c <sub>33</sub> (GPa)  | 137   | 144           | 193           | 118   |
| c <sub>44</sub> (GPa)  | 17    | 17            | 19            | 17    |
| c <sub>66</sub> (GPa)  | 48    | 39            | 53            | 38    |
| $E_{f,V2}$ (eV)        | 0.60  | 0.64          | 0.44          |       |
| E <sub>f,VI</sub> (eV) | 0.5 I | 0.63          | 0.46          |       |

Coul-Buck: Walker et al. *Philos. Mag.A* **1981**, *43* (2), 265–272. Exp:

materlals virtual·lab

Rabenau et al. J. Less-Common Met. 1976, 50 (1), 155–159. Kress et al. Phys. Rev. B 1980, 22 (10), 4620–4625.





Deng et al. npj Comp Mat. **2019**, 5, 75 Albuquerque 2019

22

### **Bulk diffusion**

- Simulation box contains 4000 atoms (10x10x10 supercell)
- MD simulations performed from 600 to 1000 K in an NVT ensemble for 1ns



|       | <b>Ε</b> <sub>a</sub> (eV) |       |       | σ <sub>RT</sub> (mS/cm) |      |       |
|-------|----------------------------|-------|-------|-------------------------|------|-------|
|       | ab                         | С     | total | ab                      | С    | total |
| eSNAP | 0.255                      | 0.327 | 0.269 | 29.6                    | 2.32 | 17.3  |
| Exp.  | 0.290                      | 0.490 |       | 1.20                    | 0.01 |       |

Exp.:Alpen et al. Appl. Phys. Lett. 1977, 30 (12), 621–623.



# Grain boundary diffusion







The presence of GB facilitates Li diffusion

D\* at 300 K

mater∥als virtual·lab

- GB: 7.09 × 10<sup>-8</sup> cm<sup>2</sup>/s
- Bulk (extrapolated):
   2.24 × 10<sup>-8</sup> cm<sup>2</sup>/s

V

#### Conclusions

- ML potentials have the potential to achieve near-quantum accuracy at a much lower cost than DFT with linear scaling => Enables science that is hitherto inaccessible!
- Choice of local environment description is critical.
- Multi-component present complications, but not insurmountable.
- X 10-100x more expensive than MEAM (can we do better?)

Transferability

virtual·lab



#### Machine learning the potential energy surface





# Standardized workflow for ML-IAP construction and evaluation



Test systems:

- Fcc Ni
- Fcc Cu
- Bcc Li
- Bcc Mo
- Diamond Ge
- Diamond Si

Available open source on Github: https://github.com/materialsvirtuallab/mlearn



### ML-IAP: Accuracy vs Cost



N

materials virtual·lab

### **ML-IAP:**Training Data Requirements



- Data quality is more important than data quantity -~O(100) structures sufficient to converge
- NNP and qSNAP require much more training data than other models.

virtual·lab

0



- The greater the ML complexity (e.g., NNP and GAP), the greater the issues with extrapolation.
- Linear SNAP performs surprisingly well on EOS and polymorph energy differences.

mater als virtual·lab



### Acknowledgements

- Shyue Ping Ong
- Zhi Deng
- Yunxing Zuo
- Chi Chen

#### Where to get the potentials?



https://github.com/materialsvirtuallab/snap

- Xiang-Guo Li. et al. Phys. Rev. B, 98, 094104 (2018)
- Zhi Deng. et al. npj Comp Mat, 5, 75 (2019)
- Yunxing Zuo, et al. "A Performance and Cost Assessment of Machine Learning Interatomic Potentials", arXiv:1906.08888 (2019)





materlals

virtual·lab

Extreme Science and Engineering Discovery Environment

