**Development of physically informed neural network** (PINN) interatomic potentials

Speaker: J. Hickman\*

G. Purja Pun\*\*, F. Tavazza\*, Y. Mishin\*\*

\* National Institute of Standards and Technology (NIST) Materials measurement laboratory (MML)

\*\* George Mason University: Department of Physics

LAMMPS Workshop and Symposium

August 13-15, 2019

Supported by NRC postdoctoral fellowship



### Motivation



### Interatomic potential model types



• LJ, EAM, ADP, Tersoff, REAX ... etc

#### "Mathematical" or "straight" NN potentials:



- Machine learning potentials
  - Gaussian process regression
  - Interpolating moving least squares
- Kernel ridge regression
- Compressed sensing
- ANN potentials

#### **Physically informed neural network (PINN):**



|           | <u>Pros</u>                                                                                                                                                                                                                           | <u>Cons</u>                                                                                                                       |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|           | <ul> <li>Fast</li> <li>Decent extrapolation</li> <li>Physically inspired</li> </ul>                                                                                                                                                   | <ul> <li>Difficult to train/fit</li> <li>Hard to improve<br/>upon once<br/>finalized</li> <li>Accuracy<br/>limitations</li> </ul> |
| n         | <ul> <li>Fast relative to DFT</li> <li>DFT level accuracy<br/>(~1-5 mEv) within<br/>training set</li> <li>Relatively straight<br/>forward/routine to<br/>train/fit</li> <li>Systematic<br/>improvement<br/>(add more data)</li> </ul> | <ul> <li>Slower than traditional potentials</li> <li>Bad extrapolation</li> </ul>                                                 |
| → PES     | <ul> <li>Same as straight NN</li> <li>Decent<br/>extrapolation</li> <li>Physically inspired</li> </ul>                                                                                                                                | <ul> <li>Slower than<br/>traditional<br/>potentials</li> </ul>                                                                    |
| Physicall | v informed artificial neural networks for ator                                                                                                                                                                                        | nistic modeling of materials                                                                                                      |

Physically informed artificial neural networks for atomistic modeling of materials GPP Pun, R Batra, R Ramprasad, Y Mishin - Nature communications, 2019

### **Artificial neural networks**



#### **Artificial neural network**



### **Artificial neural networks**



# Physically informed neural network potential (PINN)



### **Training/test set generation**

**Stable structure:** (Diamond)

#### **Alternative structures:**







#### ~14 alternate structures

• FCC, BCC, HEX, HCP, SC, Liquid, Amorphous ... etc



#### **DFT** calculation details

- Functional/PP: PBE/PAW
- ENCUT=600 eV ٠
- ~4300 structures
- block size 1-96 atoms
- k-point convergence tests for each group

#### Non-equilibrium sampling

- Isotropic expansions/compressions
- Random local atomic perturbations
- Anisotropic box variations





#### ~27 different defects

Vacancies, Various self interstitials, Surfaces, Stacking faults

## **Two dimensional structures:** Purja Pun, PRB 95, 224103 (2017)



#### 6 silicene allotropes





~18 atomic clusters

DFT data is shifted so DC phase coincides with -4.63

#### **Defects:**

Fit a baseline traditional potential via 8 adjustable  $(A_o, B_o, \alpha_o, \beta_o, a_o, h_o, \lambda_o, \sigma_o)$ 



$$RMSE = \left(\frac{\Sigma_s (E_s - \tilde{E}_s)^2}{N}\right)^{\frac{1}{2}}$$

Physically informed artificial neural networks for atomistic modeling of materials GPP Pun, R Batra, R Ramprasad, Y Mishin - Nature communications, 2019

8

#### Local structure parameters



Physically informed artificial neural networks for atomistic modeling of materials GPP Pun, R Batra, R Ramprasad, Y Mishin - Nature communications, 2019

### **PINN potential model**



### **Results**





NIST

12

### **Reproduction of DFT energy landscape**



### Si PINN comparison with traditional potential



### **ANN vs PINN Extrapolation**





#### **ANN vs PINN Extrapolation**



### **Computational efficient**



#### Source: Vesselin Yamakov (NASA)

Paragrand MC:https://software.nasa.gov/software/LAR-18773-1

K3-K40: SGI ICE Altix X 16 core cpu + NVidia Kepler K40 GPU
K3-V100: SGI ICE Altix X 16 core cpu + NVidia Volta V100 GPU
K4: Intel 6148 Skylake 40 core cpu
GMU: Intel i7-8700 CPU 12 core cpu + NVidia GTX1080 GPU

#### NOTE: results sensitive to hyper parameter choice



GPU: ~20X slower

#### <u>NN vs EAM</u>

serial: 120X slower 40 CPU: ~30X slower GPU: ~15X slower



### **Thermal properties (preliminary)**



Paragrand MC:https://software.nasa.gov/software/LAR-18773-1

### **Future work**

- •Get PINN\_BOP working in LAMMPS
- Hyper-parameter tune (speed/accuracy)
- Explore other Chemical systems:
  - •Ge, Pt, Cu
- •Binary: SiGe, SiAl, .... etc
- Possibly explore other traditional potentials formats
  - •(PINN\_EAM, PINN\_ADP, etc)
- Applications
  - study thermal properties of 2D structures
     Si ,Ge, SiGe



### Conclusions

- Developed a new silicon interatomic potential using the new PINN potential format
- •Even in preliminary stage we are obtaining excellent agreement with the DFT energies
- Current potential reproduces DFT data around ~500x better than current traditional potentials
- Better transferability than ANN potentials
- Investigating methodological considerations to streamlining the fitting procedure for faster future development

### Acknowledgements

- •Ganga Purja Pun
- Vesselin Yamakov
- Francesca Tavazza
- Yuri Mishin
- Adam RobinsonGMU,NRC,NIST



#### **References:**

- Stillinger, Frank H., and Thomas A. Weber. "Computer simulation of local order in condensed phases of silicon." Physical review B 31.8 (1985): 5262.
- ("In review") G. P. Purja Pun(1), R. Batra(2), R. Ramprasad (3) and Y. Mishin(1): (1) George Mason Univ., (2) Univ. Connecticut, (3) Georgia Tech
- Pun, GP Purja, and Y. Mishin. "Optimized interatomic potential for silicon and its application to thermal stability of silicene." Physical Review B 95.22 (2017): 224103.

#### Image references:

- https://www.tf.uni-kiel.de/matwis/amat/iss/kap\_5/backbone/r5\_3\_3.html
- https://www.wordstream.com/blog/ws/2017/07/28/machine-learning-applications
- https://www.researchgate.net/figure/268158499\_fig1\_Figure-1-Phase-diagram-of-SiGe-alloys-showing-separation-of-the-solidus-and-liquidus
- <u>http://evolution.skf.com/us/bearing-research-going-to-the-atomic-scale</u>
- /<u>https://www.chegg.com/homework-help/questions-and-answers/consider-concentric-metal-sphere-spherical-shells-shown-figure--innermost-solid-sphere-radq4808250</u>

