DisARMMD: Distance-Actuated Reaction Mechanisms in Molecular Dynamics

Jacob Gissinger¹, Benjamin Jensen², Kristopher Wise²

¹MSE Program, CU Boulder ²NASA Langley Research Center

What is the DisARMMD protocol?

- A general, user-friendly method for adjusting topology during classical MD
 - Add and remove specific bonds, angles, dihedrals, and impropers
 - Modify all force field types as well as atomic charges
 - Supports any fixed-valence force field
 - Reaction stabilization options
- Parallel implementation in LAMMPS as *fix bond/react*
 - User inputs: molecule templates of pre- and post-reaction topology
 - A map file relating atoms before and after the reaction

Molecule templates are simple! And quite similar to data files!

www.disarmmd.org

What's new?

- Recently-Added Options/Extensions to *fix bond/react*:
 - Support for coarse-grained systems (Mark Stevens, Amulya Pervaje)
 - Limit on total occurrences of a given reaction (Wolfgang Verestek) Use case: Halt reactions after an certain percentage of crosslinking
 - Customizable behavior of edge atoms (Wolfgang Verestek) For example, specify which atomic charges are updated
 - Thanks to Axel Kohlmeyer for multiple bug fixes
 - Thanks to Yoshiaki Kawagoe, Doug Pratt, etc. for additional testing
- Major updates:
 - Delete user-specified atoms based on topology
 - Reactions triggered by bond-breaking
 - Reaction constraints

Delete atoms based on topology

Δ

1) Delete unwanted reaction by-products

2) Remove specific molecules based on topology (such as small rings)

Bond-breaking reaction trigger

• Simple bond-length criterion for mechanically-induced chain scission

Reaction constraints

- Currently one option: distance constraints between any two atoms
 - Can be used to enforce a relative orientation between reacting molecules
- Other ideas: angle constraint, energy criteria, others?

Reaction Constraints Unsatisfied

Reaction Constraints Satisfied (will react)

Large-scale Nylon 6,6 Demo

Setup: 5,000x adipic acid 5,000x hexamethylenediamine

220,000 atoms Temperature: 530 K (actual synthesis temp) Final density: 0.9 g/cm³ Side length: 13.3 nm 3-5 Å reaction cutoff

>99% polymerized

Jeyakumar, A. (2012). Solid-state modification of polyamide-6,6 Eindhoven: Technische Universiteit Eindhoven.

>99% polymerized Nylon 6,6: Chains vs. Cycles

¹Endgroup-based separation and quantitation of polyamide-6,6 by means of critical chromatography. Mengerinka, et al. Journal of Chromatography A, 949 (2002).

Nylon 6,6: chain morphology

degree of polymerization (# repeat units)

Uniaxial extension with chain scission:

- Uniaxial strain
 - Highly entangled system
 - Craze formation
- Chain scission reaction
 - Relieve topological constraints
 - Activated if C-N bond > 1.67Å
 - Chosen empirically
 - Only 6 chain scissions occurred

Polystyrene demo

>99% polymerized polystyrene
200,000 atoms (12,500x styrene)

>98.5% polymerized with 3.0 Å distance cutoff, before switching to 3.5 Å

Conclusion: DisARMMD can handle small monomers with bulky side groups

15

>99% polymerization

Summary and Outlook

- The DisARMMD protocol scales well
 - 10,000 nylon precursors \int true temp. (~260 C)
 - 12,500 styrene molecules \int low cutoff 3-5 Å \int
- Correctly predicts cyclic content, dispersity and chain morphology
- What's next?
 - More predictive reaction constraints
 - Potential energy surfaces?
 - Large-scale bio applications
 - See Andrew Jewett's talk tomorrow
 - Features in progress
 - Additional reaction constraints
 - Option to create atoms

Thank you!

