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Evolution of Interatomic Potentials

• Resources are limited, which is your best choice?
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Qualitative Properties

Near QM Accuracy

Twobody (B.C.)

Lennard-Jones, Hard 

Sphere, Coulomb, 

Bonded

Manybody (1980s)

Stillinger-Weber, 

Tersoff, Embedded 

Atom Method

Advanced (90s-2000s)

REBO, BOP, COMB, 

ReaxFF

Machine Learning (2010s)

NNP, GAP, SNAP, ChIMES, 

MTP, Deep NNs...

SNAP

GAP
Plimpton and Thompson, MRS Bulletin (2012).
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SNAP Definition and Work Flow
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Model Form

Regression Method

• Energy of atom 𝑖 expressed as a basis expansion over K 

components of the bispectrum (𝐵𝑘
𝑖 )

• β vector fully describes a SNAP potential

• Decouples MD speed from training set size

DFT TrainingSet of DescriptorsWeights



Role of Atomistic Modeling in Studying 
Plasma Material Interactions

Wirth, et al.  MRS Bulletin 36 (2011) 216-222

Baldwin, et. al.  J. Nucl. Mater. 363-365 

(2007) 1179-1183Wirth, et. al.  J. Nucl. Mater. 463 (2015) 30-38



Tungsten-Beryllium SNAP Fitting
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• Initially fit SNAP potential for pure elements

• Making a multi-element SNAP potential does 

sacrifice some accuracy from either pure 

component fit. 

• Training set includes W-Be intermetallic 

structures 

M. A. Wood, et al., Phys. Rev. B 99, 184305



Extrapolation Testing – Single Implantation 
Simulations
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• Single implantations of  75 eV Be in W

• MD depth profile is more shallow than binary collision models 

predict

• Capture rate is lower than BC model at 40% (versus 60%)

• Improvement in defect formation energies

Defect statistics match formation energies

M. A. Wood, et al., Phys. Rev. B 99, 184305
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Cumulative Energetic Be Implantation in W

(100) (111)(110)

5000 inserted Be atoms

50 ns 

1.1 x 1020 m-2



Exchange Mechanism with Beryllium

• Clear jumps in tungsten displacement are exchanges with beryllium

• Low tungsten diffusion outside beryllium exchanges

• Exchange mechanisms occurs on the order of  nanoseconds

Red: Be Exchanged

Green: W Exchanged

Purple: Be

Gray: W



Slices Through Amorphous Layer Indicate Structure9

5-10 nm

10-15 nm

(111)(110) WBe2

C14 Laves Phase



Extending the Potential for other Plasma Species - Helium
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Defect DFT

(eV)

MD

(eV)

Sub 2.20 2.90

Basal Split 5.46 5.41

Basal Tetrahedral 5.78 5.64

Basal Octahedral 5.81 5.60

Crowdion 6.11 5.72

• Extend potential to include helium

• Used form of  existing W-He1 pair potential for Be-He

• Fit to He defects in Be calculated using DFT

• Pair potential reproduces ordering of  defects and formation 

energies are consistent with DFT

He Defect Formation 

Energies in Be

[1] N. Juslin and B.D. Wirth, Journal of Nuclear Materials 432 (2013) 61–66
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• In pure W, SNAP is consistent with existing EAM potential1
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Extending the Potential for other Plasma Species - Helium
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Extending the Potential for other Plasma Species - Helium
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Defect DFT
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MD
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Sub 2.20 2.90

Basal Split 5.46 5.41

Basal Tetrahedral 5.78 5.64

Basal Octahedral 5.81 5.60

Crowdion 6.11 5.72

• Extend potential to include helium

• Used form of  existing W-He1 pair potential for Be-He

• Fit to He defects in Be calculated using DFT

• Pair potential reproduces ordering of  defects and formation 

energies are consistent with DFT

• Series of  single 100 eV He implantations in W and W-Be

• In pure W, SNAP is consistent with existing EAM potential1

• He implantation in W-Be amorphous layer shifts depth profile 

• Similar shift in WBe2 structure and amorphous W

He Defect Formation 

Energies in Be

W Be Layer C14 W Amorph

% Implanted 38.9 55.2 60.5 70.3

[1] N. Juslin and B.D. Wirth, Journal of Nuclear Materials 432 (2013) 61–66



Summary14

• We have developed a machine learned SNAP potential for studying W-Be plasma material interactions and have 
extended it to include He

• The SNAP potential well reproduces both W and Be as well as W-Be intermetallic properties and improves upon 
existing potentials for parameters most relevant to radiation damage modeling

• We have performed large simulations of  cumulative Be implantation in tungsten

• An amorphous layer of  mixed W-Be has been observed which may be a pre-cursor to intermetallic formation

• Structured layers similar to WBe2 phases were observed

• An exchange mechanism allows tungsten to migrate into the surface amorphous layer

• Helium implantation and retention is modified when Be is present in W

• Physics observed in this work can be used to inform continuum codes

• This potential will be extended to include hydrogen and nitrogen and further MD simulations of  mixed materials 
will be performed

SciDAC4-PSI2
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Backup Slides



• GAP (Gaussian Approximation Potential): Bartok, Csanyi et al., Phys. Rev. Lett, 2010. Uses 

3D neighbor density bispectrum and Gaussian process regression. 

• SNAP (Spectral Neighbor Analysis Potential): Our SNAP approach uses GAP’s neighbor 

bispectrum, but replaces Gaussian process with linear regression. 

- More robust

- Lower computational cost (training and predicting)

- Decouples MD speed from training set size

- Enables large training data sets, more bispectrum coefficients

- Straightforward sensitivity analysis

ESNAP = Ei
SNAP
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N

å + fij
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SNAP: Spectral Neighbor Analysis Potentials9



Cumulative Be Athermal Deposition on W Surface
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• Be randomly placed on surface every 10 ps
with zero energy

• Initially Be resides at hollow sites

• Be begins to exchange with tungsten once 
hollow sites fill up

• Similar amorphous layer forms at higher 
fluences 

• Thicker layer that extends from 0.5 nm 
below surface to 1 above surface

• Be remains near surface

• Almost 20% of  W in the first 1.5 nm is 
now located above the original surface

4000 inserted Be atoms, 1.1 x 1020 m-2

Purple: Beryllium

Gray: Tungsten



Cumulative Energetic Be Implantation in W

• 75 eV Be implanted every 10 ps

• 1000 K, (100) surface, 6 nm x 6 nm x 12 
nm box

• Initially Be implants and resides in W as 
<111> dumbbell or substitutional 
defects

• Amorphous layer forms that is  2 nm 
thick

• W depth profile indicates loss of  crystal 
structure at higher fluences

• Be depth profile is deeper than expected 
based on initial implantation depth 

4000 inserted Be atoms, 1.1 x 1020 m-2

35% Retention
Purple: Beryllium

Gray: Tungsten



Slices Through Amorphous Layer Indicate Structure19

(100) (111)(110)

5-10 

nm

10-15 

nm


