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Evolution of Interatomic Potentials
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SNAP Definition and Work Flow

sy IEEERERS

Model Form EEENERERES

S AR BB

» Energy of atom i expressed as a basis expansion over K Fitting e ity

components of the bispectrum (B,"() Hyper-parameters wwwus sl Reference
EE R R ER
K f\ TEEN
k=1

SNAP i
)> FitSNAP.py |

Regression Method D A K O T A
\\

» B vector fully describes a SNAP potential

» Decouples MD speed from training set size u

IIliIl(l |W ) D’B B T| |2 — Tn ||’8| |n) Objective Functions,
’,' A W, Material Properties
o . *e

*
Weights  Set of Descriptors DFT Training



‘ Role of Atomistic Modeling in Studying

Plasma Material Interactions
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Tungsten-Beryllium SNAP Fitting
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Fraction of Captured Be

Extrapolation Testing — Single Implantation
Simulations

Single implantations of 75 eV Be in W
MD depth profile is more shallow than binary collision models

predict

Capture rate is lower than BC model at 40% (versus 60%0)
Improvement in defect formation energies
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Percent of Implanted Be

Defect Type (100) Surface (111) Surface
[111] Dumbbell 412 23.9
Substitution 22.2 34.6
[100] Surf. Hollow Site 12.3 8.3
Tetrahedral Interstitial 10.4 12.4
[110] Dumbbell 8.4 11.3
Octahedral Interstitial 5.3 4.1
Other 0.4 2.8
Surf. Bridge Site 0.03 2.6

Defect statistics match formation energies

Defect Type Formation Energy (eV)
DFT SNAP BOP

[111] Dumbbell 4.30 3.66
Substitution 3.11 3.29 -2.00

[100] Surf. Hollow Site -1.05 -1.39 -3.52
Tetrahedral Interstitial 4.13 4.20 -0.28
[110] Dumbbell 4.86 4.29 -0.03
Octahedral Interstitial ~ 3.00 5.11 0.34
[100] Surf. Bridge Site 1.01 0.44 -1.30

M. A. Wood, et al., Phys. Rev. B 99, 184305



‘ Cumulative Energetic Be Implantation in W

5000 inserted Be atoms
50 ns
1.1 x 1020 m-2
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Displacement Magnitude (A)

Exchange Mechanism with Beryllium Red: Be Bxchanged
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* Clear jumps 1n tungsten displacement are exchanges with beryllium
* Low tungsten diffusion outside beryllium exchanges

o EXChange mechanisms occurs on the order of nanoseconds




Slices Through Amorphous Layer Indicate Structure
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Extending the Potential for other Plasma Species - Helium
10

He Defect Formation
Energies in Be

Defect DFT MD
(eV) (eV)

Sub 2.20 2.90

Basal Split 5.46 5.41
Basal Tetrahedral 5.78 5.64
Basal Octahedral 5.81 5.60
Crowdion 6.11 5.72

Extend potential to include helium

Used form of existing W-He' pair potential for Be-He

Fit to He defects in Be calculated using DFT

Pair potential reproduces ordering of defects and formation

energles are consistent with DEFT

[1] N. Juslin and B.D. Wirth, Journal of Nuclear Materials 432 (2013) 61-66



Extending the Potential for other Plasma Species - Helium
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Extending the Potential for other Plasma Species - Helium
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He Defect Formation
Energies in Be

Defect DFT MD
(eV) (eV)

Sub 2.20 2.90

Basal Split 5.46 5.41
Basal Tetrahedral 5.78 5.64
Basal Octahedral 5.81 5.60
Crowdion 6.11 5.72

Extend potential to include helium

Used form of existing W-He' pair potential for Be-He

Fit to He defects in Be calculated using DFT

Pair potential reproduces ordering of defects and formation
energles are consistent with DEFT

Series of single 100 eV He implantations in W and W-Be
In pure W, SNAP 1s consistent with existing EAM potential1
He implantation in W-Be amorphous layer shifts depth profile

[1] N. Juslin and B.D. Wirth, Journal of Nuclear Materials 432 (2013) 61-66
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Extending the Potential for other Plasma Species - Helium
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He Defect Formation
Energies in Be

Defect DFT MD
(eV) (eV)

Sub 2.20 2.90

Basal Split 5.46 5.41
Basal Tetrahedral 5.78 5.64
Basal Octahedral 5.81 5.60
Crowdion 6.11 5.72

Extend potential to include helium

Used form of existing W-He' pair potential for Be-He

Fit to He defects in Be calculated using DFT

Pair potential reproduces ordering of defects and formation
energles are consistent with DEFT

Series of single 100 eV He implantations in W and W-Be

In pure W, SNAP is consistent with existing EAM potential
He implantation in W-Be amorphous layer shifts depth profile
Similar shift in WBe, structure and amorphous W

[1] N. Juslin and B.D. Wirth, Journal of Nuclear Materials 432 (2013) 61-66
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‘ Summary

* We have developed a machine learned SNAP potential for studying W-Be plasma material interactions and have
extended 1t to include He

* The SNAP potential well reproduces both W and Be as well as W-Be intermetallic properties and improves upon
existing potentials for parameters most relevant to radiation damage modeling

* We have performed large simulations of cumulative Be implantation in tungsten

* An amorphous layer of mixed W-Be has been observed which may be a pre-cursor to intermetallic formation
* Structured layers similar to WBe, phases were observed

* An exchange mechanism allows tungsten to migrate into the surface amorphous layer

* Helium implantation and retention is modified when Be is present in W

* Physics observed 1n this work can be used to inform continuum codes

* This potential will be extended to include hydrogen and nitrogen and further MD simulations of mixed materials
will be performed

eXASCALE COMPUTING PROJECT




Backup Slides



9‘ SNAP: Spectral Neighbor Analysis Potentials

*+  GAP (Gaussian Approximation Potential): Bartok, Csanyi et al., Phys. Rev. Lett, 2010. Uses
3D neighbor density bispectrum and Gaussian process regression.

*  SNAP (Spectral Neighbor Analysis Potential): Our SNAP approach uses GAP’s neighbor
bispectrum, but replaces Gaussian process with linear regression.
- More robust
- Lower computational cost (training and predicting)
- Decouples MD speed from training set size
- Enables large training data sets, more bispectrum coefficients
- Straightforward sensitivity analysis



Cumulative Be Athermal Deposition on W Surface

4000 inserted Be atoms, 1.1 x 1020 m-2 .
| Purple: Beryllium

Gray: Tungsten

* Be randomly placed on surface every 10 ps
with zero energy

* Initially Be resides at hollow sites
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Cumulative Energetic Be Implantation in W

4000 inserted Be atoms, 1.1 x 1020 m-2 Purple: Beryllium
35% Retention Gray: Tungsten
5SS R LA A AanDy Beado-ain v . ' * 75 eV Be implanted every 10 ps
EANSE e Bt M * 1000 K, (100) surface, 6 nm x 6 nm x 12
SR« RIS S - nm box
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W and Be Depth Distributions 3t 40 ns <111> dumbbell or substitutional
: x::nmitpin?a:ntation - : defeCtS
ool temmeten] ’ * Amorphous layer forms that 1s 2 nm
thick
: * W depth profile indicates loss of crystal
- structure at higher fluences
* Be depth profile 1s deeper than expected
, | based on initial implantation depth
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19 I Slices Through Amorphous Layer Indicate Structure
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