

Machine Learned Interatomic Potentials for Modeling Plasma Material Interactions

Mary Alice Cusentino

Mitchell Wood

Aidan Thompson

Center for Computing Research, Sandia National Laboratories

This work has been supported by the U. S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, Office of Advanced Scientific Computing Research through the Scientific Discovery through Advanced Computing (SciDAC) project on Plasma-Surface Interactions.

This work has been supported by the Exascale Computing Project (No. 17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725.

Approved for release SAND2019-9454 C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE+NA0003325.

Evolution of Interatomic Potentials

SNAP Definition and Work Flow

Model Form

3

• Energy of atom *i* expressed as a basis expansion over K components of the bispectrum (B_k^i)

$$E_{SNAP}^{i} = \beta_0 + \sum_{k=1}^{K} \beta_k (B_k^{i} - B_{k0}^{i})$$

Regression Method

- *B* vector fully describes a SNAP potential
- Decouples MD speed from training set size

Role of Atomistic Modeling in Studying Plasma Material Interactions

Wirth, et. al. J. Nucl. Mater. 463 (2015) 30-38

Baldwin, et. al. J. Nucl. Mater. 363-365 (2007) 1179-1183

2Mm

RN 06232005

UC PISCES

Tungsten-Beryllium SNAP Fitting

• Initially fit SNAP potential for pure elements

- Making a multi-element SNAP potential does sacrifice some accuracy from either pure component fit.
- Training set includes W-Be intermetallic structures

Description	N_E	N_F	σ_E	σ_F
W-Be:				
Elastic Deform [†]	3946	68040	$3\cdot10^{5}$	$2\cdot 10^3$
Equation of State [†]	1113	39627	$2\cdot 10^5$	$4\cdot 10^4$
$DFT-MD^{\dagger}$	3360	497124	$7 \cdot 10^4$	$6 \cdot 10^2$
Surface Adhesion	381	112527	$2\cdot 10^4$	$9\cdot\mathbf{10^4}$
† Multiple crystal phases included in this group:				
B ₂	-12	X	C ₁₄	
C ₁₅	C ₃₆		D ₂ b	

Extrapolation Testing – Single Implantation Simulations

• Single implantations of 75 eV Be in W

6

- MD depth profile is more shallow than binary collision models predict
- Capture rate is lower than BC model at 40% (versus 60%)
- Improvement in defect formation energies

Percent of Implanted Be	
(100) Surface	(111) Surface
41.2	23.9
22.2	34.6
12.3	8.3
10.4	12.4
8.4	11.3
5.3	4.1
0.4	2.8
0.03	2.6
	Percent of I (100) Surface 41.2 22.2 12.3 10.4 8.4 5.3 0.4 0.03

Defect statistics match formation energies

Defect Type	Formation Energy (eV)		
	DFT	SNAP	BOP
[111] Dumbbell	4.30	3.66	0.67
Substitution	3.11	3.29	-2.00
[100] Surf. Hollow Site	-1.05	-1.39	-3.52
Tetrahedral Interstitial	4.13	4.20	-0.28
[110] Dumbbell	4.86	4.29	-0.03
Octahedral Interstitial	3.00	5.11	0.34
[100] Surf. Bridge Site	1.01	0.44	-1.30

M. A. Wood, et al., Phys. Rev. B 99, 184305

Cumulative Energetic Be Implantation in W

5000 inserted Be atoms 50 ns $1.1 \times 10^{20} \text{ m}^{-2}$

(110)

Exchange Mechanism with Beryllium

Red: Be Exchanged

- Clear jumps in tungsten displacement are exchanges with beryllium
- Low tungsten diffusion outside beryllium exchanges
- Exchange mechanisms occurs on the order of nanoseconds

9 Slices Through Amorphous Layer Indicate Structure

He Defect Formation Energies in Be

Defect	DFT (eV)	MD (eV)
Sub	2.20	2.90
Basal Split	5.46	5.41
Basal Tetrahedral	5.78	5.64
Basal Octahedral	5.81	5.60
Crowdion	6.11	5.72

• Extend potential to include helium

- Used form of existing W-He¹ pair potential for Be-He
- Fit to He defects in Be calculated using DFT
- Pair potential reproduces ordering of defects and formation energies are consistent with DFT

He Defect Formation Energies in Be

Defect	DFT (eV)	MD (eV)
Sub	2.20	2.90
Basal Split	5.46	5.41
Basal Tetrahedral	5.78	5.64
Basal Octahedral	5.81	5.60
Crowdion	6.11	5.72

• Extend potential to include helium

- Used form of existing W-He¹ pair potential for Be-He
- Fit to He defects in Be calculated using DFT
- Pair potential reproduces ordering of defects and formation energies are consistent with DFT
- Series of single 100 eV He implantations in W and W-Be
- In pure W, SNAP is consistent with existing EAM potential¹

He Defect Formation Energies in Be

Defect	DFT (eV)	MD (eV)
Sub	2.20	2.90
Basal Split	5.46	5.41
Basal Tetrahedral	5.78	5.64
Basal Octahedral	5.81	5.60
Crowdion	6.11	5.72

• Extend potential to include helium

- Used form of existing W-He¹ pair potential for Be-He
- Fit to He defects in Be calculated using DFT
- Pair potential reproduces ordering of defects and formation energies are consistent with DFT
- Series of single 100 eV He implantations in W and W-Be
- In pure W, SNAP is consistent with existing EAM potential¹
- He implantation in W-Be amorphous layer shifts depth profile

He Defect Formation Energies in Be

Defect	DFT (eV)	MD (eV)
Sub	2.20	2.90
Basal Split	5.46	5.41
Basal Tetrahedral	5.78	5.64
Basal Octahedral	5.81	5.60
Crowdion	6.11	5.72

• Extend potential to include helium

- Used form of existing W-He¹ pair potential for Be-He
- Fit to He defects in Be calculated using DFT
- Pair potential reproduces ordering of defects and formation energies are consistent with DFT
- Series of single 100 eV He implantations in W and W-Be
- In pure W, SNAP is consistent with existing EAM potential¹
- He implantation in W-Be amorphous layer shifts depth profile
- Similar shift in WBe₂ structure and amorphous W

Summary

- We have developed a machine learned SNAP potential for studying W-Be plasma material interactions and have extended it to include He
- The SNAP potential well reproduces both W and Be as well as W-Be intermetallic properties and improves upon existing potentials for parameters most relevant to radiation damage modeling
- We have performed large simulations of cumulative Be implantation in tungsten
- An amorphous layer of mixed W-Be has been observed which may be a pre-cursor to intermetallic formation
- Structured layers similar to WBe₂ phases were observed
- An exchange mechanism allows tungsten to migrate into the surface amorphous layer
- Helium implantation and retention is modified when Be is present in W
- Physics observed in this work can be used to inform continuum codes
- This potential will be extended to include hydrogen and nitrogen and further MD simulations of mixed materials will be performed

Backup Slides

SNAP: Spectral Neighbor Analysis Potentials

- GAP (Gaussian Approximation Potential): Bartok, Csanyi et al., *Phys. Rev. Lett*, 2010. Uses 3D neighbor density bispectrum and Gaussian process regression.
- **SNAP (Spectral Neighbor Analysis Potential):** Our SNAP approach uses GAP's neighbor bispectrum, but replaces Gaussian process with **linear regression**.
 - More robust
 - Lower computational cost (training and predicting)
 - Decouples MD speed from training set size
 - Enables large training data sets, more bispectrum coefficients
 - Straightforward sensitivity analysis

Cumulative Be Athermal Deposition on W Surface

4000 inserted Be atoms, $1.1 \times 10^{20} \, \text{m}^{-2}$

17

Purple: Beryllium Gray: Tungsten

- Be randomly placed on surface every 10 ps with zero energy
- Initially Be resides at hollow sites
- Be begins to exchange with tungsten once hollow sites fill up
- Similar amorphous layer forms at higher fluences
- Thicker layer that extends from 0.5 nm below surface to 1 above surface
- Be remains near surface
- Almost 20% of W in the first 1.5 nm is now located above the original surface

Cumulative Energetic Be Implantation in W

4000 inserted Be atoms, $1.1 \times 10^{20} \text{ m}^{-2}$

35% Retention

Purple: Beryllium Gray: Tungsten

- 75 eV Be implanted every 10 ps
- 1000 K, (100) surface, 6 nm x 6 nm x 12 nm box
- Initially Be implants and resides in W as <111> dumbbell or substitutional defects
- Amorphous layer forms that is 2 nm thick
- W depth profile indicates loss of crystal structure at higher fluences
- Be depth profile is deeper than expected based on initial implantation depth

¹⁹ Slices Through Amorphous Layer Indicate Structure

