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Grand challenge: predict crystal plasticity from dislocation physics

Discrete Dislocation Dynamics 

G. Canova and L. P. Kubin (1991)
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Premise and promise of the DDD method

Collective response of statistically 
representative dislocation ensembles 

Dislocation mobility
and interactions

…

Dislocation theory, MD DDD

Strain hardening

Local rules
Patterns
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Huge reduction in DOFs
Microstructure à property
Physics à crystal plasticity

Two key challenges of DDD

Fidelity

Essential physics of dislocation behavior 
should not be “lost in translation” 

(More on this later)

DDD: a darling of the multiscale materials modeling community 

Computability
Computationally expensive

Still limited to small strains (<10%)
Many (solvable but unsolved) problems remain

Large-strain crystal plasticity, dislocation patterns, etc., are still 10-15 years away
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Meanwhile

Exaflops

Since DDD launch in 1991

• Peak flops rate increased by 7 orders

• World’s computing capacity increased 
by 8 orders (now ~ 1022 flops)
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Crystal plasticity: multi-scale or cross-scale?

Multi-scaling is a necessity, not a must 

Cross-scale == brute force: large enough to be statistically representative, 
yet resolving every detail of atomic motion

Coarse-graining always introduces uncertainty 
Unknown uncertainty is worse than a large uncertainty 

By side-stepping coarse-graining inherent in DDD, CDD, etc., uncertainty of direct MD
simulations of crystal plasticity reduces to the uncertainty in the interatomic potential

Development of multi-scale methods is (fun but) laborious, the MD method is mature
and exceptionally robust
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Back to good old Molecular Dynamics

Material dynamics in full glory: every atomic “jiggle and wiggle” (R. Feynman)

MD challenges

Severe limits on length and time scales (this is what DDD was developed to overcome)

Limited accuracy of atom-atom interaction models (shared with DDD)

Enormous amounts of data generated in fully dynamic MD simulations (will come back to this)
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Memory limit
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x y

z

Direct MD simulations of crystal plasticity

6M – 2.1B atoms, BCC lattice, 3D periodic 

Li et al (2003) EAM potential model for Ta

Dislocations sourced through multiplication

Straining along one of the box axes
Constant true rate of straining

Constant temperature

Relaxation of lateral stress (Poisson effect)

MD simulations of such magnitude were 
previously thought to be unthinkable
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Steady/saturated flow is observed

Path-independent plastic flow
All straining trajectories converging to the 
same ultimate straining conditions, lead to 
the same ultimate strength

dislocation density
line geometry
network topology
…
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Kneading the metal

Brick 
geometry

1:2:4 4:1:2 2:4:1 1:2:4 2:4:1 
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Direct MD simulations of crystal plasticity

Solving two ages-old conundrums of physical metallurgy 

3-stage hardening of metals Dislocation patterns in crystals

INCITE 2018-2019 Project: Crystal plasticity from first principles

Work in progress



16

INCITE 2018: Origin of 3-stage hardening

MD simulations Experiments
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Initial 
orientation

Initial symmetry Rotation 
observed

3-stage 
hardening

001 8-fold no no
111 6-fold no no
112 2-fold no no
102 2-fold, breaks yes yes
212 2-fold, holds yes yes
213 No symmetry yes yes
8,5,13 No symmetry yes yes
101 2-fold, breaks yes yes

Summary: nature of 3-stage hardening

• 3-stage hardening is caused by crystal rotation during straining

• Depending on the initial crystal orientation, straining axis asymptotically 
rotates to one of three stable ”attractor” orientations: 001, 111 or 112.
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MD simulations reveal details not accessible in experiments 
In situ in-bulk microscopy

parabolic
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MD simulations reveal details not accessible in experiments 
In situ in-bulk microscopy
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Origins of 3-stage hardening have been debated for over 60 years

Allan Cottrell: “Strain hardening is perhaps the most difficult remaining problem in 
classical physics.  Harder than turbulence.”

Has been key aspiration of dislocation theory, thousands of papers published.  

Direct MD simulations close the debate: it is all about crystal rotation. 
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Our most important observation so far

Physics of crystal plasticity scales: the mechanisms appear to remain the same over a 
vast range of straining rates from quasi-static experiments  (10-5/s) to MD (104 – 109/s).
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Livermore Big⊗Big simulation (LBB)

MD simulation with 231 = 2,147,483,648 atoms

Simulated time = 5 µs (5.10-6 seconds)

Simulation size = 10,000 atoms.seconds (~100 times greater than any other MD simulation)

Produced 8.1019 bytes = 80 exabytes of recordable trajectory data

~ 6 times (estimated) Google’s worldwide storage capacity 

LAMMPS on Sequoia
Developed at Sandia NL  

Massive BG/Q machine at LLNL
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LBB simulation as a benchmark for DDD

Atomistic input:

Elastic constants and dislocation mobility functions match the MD model at P=0 and T=300K 

Simulation geometry:

Same size and shape of simulation volume as in MD

Initial configuration:

Same 32 hexagon-shaped prismatic loops placed in the same positions in the volume

Straining conditions:

Same 001 compression under the same straining rate 105 1/s 

DDD model maximally matched to the MD model of tantalum
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DDD vs MD comparison

Dislocation density is under-predicted by factor 15-20Strength is under-predicted by factor 3-4
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Fidelity of MD à DDD workflow is uncertain

Too much ”lost in translation” ?

Local rules

Challenge to DDD practitioners

Develop a DDD model to match LBB simulation predictions
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Back to MD: tomorrow is now

Future is bright for MD simulations

• In 6 years (on average) the Top500
top machine moves to the bottom

• Sequoia is already only 13th fastest

• 1000 machines faster than Sequoia
expected in 4 years

Exaflops

ASC(I) DDD 
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Tomorrow is now

Exaflops

It takes ~ 6 years on average for 
the World’s most powerful computer 
to move to the bottom of top500 list

(Today all top 500 > 1 Pflops)

ASC(I) DDD 
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Year
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Cost of computing per Gflop
$165,000,000,000 in 1963

$400,000 in 1993
$0.01 in 2018

Power efficiency: 17 Gflops/Watt 
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• The world’s top machine Summit (ORNL) has 10 Pb of total memory:
sufficient for LAMMPS simulations with ~1013 atoms or 10 x 10 x 10 𝜇3.

• Three major HPC hardware components:

Integral processing speed (growing fastest)
Memory (slower growth)
Inter-node communication rate (slowest growth)

• Current limit is ~ 1-10 𝜇s of simulated MD trajectory per compute day. 

Inter-node communication limit

• Methods of accelerated MD may speed up simulations by orders of magnitude.

Tomorrow is now
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Memory limit
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Greater parallelism

Larger memory

Efficient algorithms
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Cross-scale MD simulations

Key ingredients for success

1. Accurate, transferrable and computationally efficient interatomic potentials.

2. Increasingly large and long MD simulations.

3. Data management: on the fly analyses, reduction, compression, knowledge acquisition. 

Sufficiently large to be statistically representative of the simulated model system 
and yet resolving every tiniest detail of atomic motion.
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Cross-scale MD simulations

Interatomic
potential

DDD model Strength
Mechanisms,

rules, parameters

MD Meso DDD

Large & long
simulations

Electronic 
structure

calculations Dataset for 
potential 

DFT Interatomic
potential

StrengthMD

Large & long
simulations



32

Interatomic 
potentials

Fidelity

Efficiency Transferability

Fidelity Ability to accurately reproduce or predict a material property of interest.

Efficiency Inverse of computational cost of force evaluations. 

Transferability Fidelity of predictions over a wide range of properties and conditions.  

Interatomic potentials à la carte

Automated on-demand development of interatomic potentials 
with optimal tradeoff between fidelity, efficiency and 

transferability  
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New efficient algorithms for massively parallel simulations
Parallel-in-time integrators
Asynchronous simulators

Accelerated MD, parallel boost (already in LAMMPS)
…

Increasingly large MD simulations

HPC capabilities continue to grow unabated
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A major challenge for cross-scale MD simulations

Simulations data management
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Exascale data challenge

One day of direct LAMMPS simulation of metal strength on Sequoia produces 
4.1018 bytes = 4000 petabytes = 4 exabytes 

of MD trajectory data 

Comparable to Google’s worldwide 
storage capacity

Data reduction is paramount to extract knowledge
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In situ computational microscopy

§ Automated identification and precise indexing of crystal defects: dislocations, twins, grain 
boundaries, surfaces, point defects, etc.

§ Simulation data reduction and analyses

§ High-performance visualization tools

Alexander Stukowski
Technische Universität Darmstadt 
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Material dynamics in arbitrary detail
Alex Stukowski

On-the-fly sweep-trace analysis (blur)  

Edge dislocation motion Screw dislocation motion

Dislocation annihilation Dislocation intersectionData reduction ratio ~ 10-5
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Data reduction does not come cheap

Stukowski’s classic DXA algorithm works in two stages

1. run fix disloc/orig in LAMMPS to build tracing mesh (runs in parallel)

2. run trace_tool to trace and stich the dislocation network (runs on single node only)

On a 24 billion atoms simulation disloc/orig takes minutes per snapshot, but 
trace_tool postprocessing takes hours and requires a lot of on-node memory.

56 billion atoms simulations in the pipeline, present a challenge to process.

Stukowski is hard at work developing scalable parallel on-the-fly DXA
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Reduced data is still huge

Our ongoing 56 billion atoms simulations of Ta are producing dislocation networks 
containing 12M network nodes and about 20M dislocations in a single frame.

Even after 10-5 reduction such data is still too much for a human to comprehend.

To engage human vision and to feed intuition this data should be further reduced.  

Multi-scale data reduction workflows are needed 
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0.99999 of MD trajectory data is lost forever

Learning itself is more expensive than MD simulation (per frame)

Much of MD trajectory data is redundant

Need near-zero-cost on-the-fly redundancy filtering

Data diversity pre-selection for subsequent ML

Information theory

Can we machine learn on exabytes of trajectory data?
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Summary

Direct (cross-scale) MD simulations of crystal plasticity present an inviting alternative 
to multi-scaling.

Results of large-scale MD simulations can and should be used to improve fidelity of DDD and
other multi-scale methods.

In our simulations so far, we observe that basic mechanisms of crystal plasticity appear to be
the same over a vast range of straining rates from quasi-static (10-5/s) to MD (104 – 109/s).

Serious challenge to address: what to do with all the huge streams of MD data? 
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