Learning with Graph Kernels in the Chemical Universe

Yu-Hang Tang

Luis W. Alvarez Postdoctoral Fellow in Computing Sciences Computational Research Division Lawrence Berkeley National Laboratory

Contents

- 1. Active learning of molecular properties
- 2. Graph kernel as similarity metric for molecules
- 3. Application to atomization energy prediction
- 4. The GraphDot package
- 5. Summary

Predicting Molecular Properties

- > Many molecular properties are functions of their structure
 - > Energy/force
 - > Chromatography
 - Reactivity
- > But experimentation/computation to acquire the properties can be expensive
 - Quantum mechanical computations
 - > Large amount of sampling
 - Experiment setup
- > Plus, the search space for chemical elements are combinatorially large

Need for ML algorithm that can **not only learn from data**, but also can **guide data acquisition**

2

Gaussian process regression primer

 Conditional distributions of a multivariate normal: given three unit Gaussian random variables A, B, and C, and their covariance matrix Σ, can we infer the value of C if A and B is known?

		Α	В	С	Given	Observe	Intuition	
Covariance matrix	Α	1	0.5	0.9	A=2	Cov[A,C]=0.9	C should be close to 2	
	В	0.5	1	0.8	B=3	Cov[B,C]=0.8	C should also be close to 3	
	С	0.9	0.8	1	Conclu	Conclusion: C is probably somewhere between 2 and 3		

> The above inference have a **closed-form solution**

$$\mu[C] = \begin{bmatrix} 0.9\\ 0.8 \end{bmatrix}^{T} \begin{bmatrix} 1 & 0.3\\ 0.3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2\\ 3 \end{bmatrix} \approx 2.733$$
$$\bigvee$$
$$Var[C] = 1 - \begin{bmatrix} 0.9\\ 0.8 \end{bmatrix}^{T} \begin{bmatrix} 1 & 0.3\\ 0.3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0.9\\ 0.8 \end{bmatrix} \approx 0.027$$

With 95% confidence

C = 2.733 + 0.054

Gaussian process regression (GPR) for supervised learning

- Given a few sample points (i.e. training data) from a hidden function, can GPR infer what the function is?
 - > Yes, assuming covariance is a function of distance, e.g. $K(x_1, x_2) = \exp \left[-\frac{1}{2}\frac{(x_1 x_2)^2}{\sigma^2}\right]$

4

> Next training point decided on-the-fly, guided by GP's predictive uncertainty

5

The previous example was cheating

- > Carried out as a 1D GPR on the real line
- > Problem

How to define **covariance functions between molecules**?

- > Hint: it is our belief that **similar molecules have covariate properties**
 - > covariance is statistician's way for describing 'similarity' between random variables
- > Need for similarity quantification between atomistic configurations

Similarity functions between molecules: challenges

- Variable degrees of freedom
- > Discrete label/topology space

Similarity functions between molecules: challenges

Similarity functions between molecules: challenges

Symmetry adaptation

Similarity comparison via feature vectors: detour?

- > Well-known fundamental similarity functions
 - > The **cosine similarity**: based on angle (similar if pointing in the same direction)
 - > Square exponential RBF: based on L_2 distance (similar if close in space)
- For molecules: apply the cosine/Gaussian similarity function on a molecular feature vector
 - > Behler-type symmetry functions: Behler. J Chem Phys. 2011
 - > Eigenspectrum of coulomb matrix: Rupp et al. PRL. 2012
 - > SOAP: spherical harmonics expansion of density. Bartók et al. PRB. 2013
 - > Bispectrum of mass density. Bartók et al. PRL. 2010
 - > DECAF: optimal quadrature expansion of density + canonical alignment
 - Y.-H. Tang et al. JCP. 2018: An atomistic fingerprint algorithm for learning ab initio molecular force fields <u>https://doi.org/10.1063/1.5008630</u>
 - > J Chem Phys 2018 Editors' Choice
 - > and hundreds more...

Similarity between structured data

- > Molecules are intrinsically graphs with
 - > Variable numbers of nodes and edges
 - Non-sequential connectivity between components
- > Explicit feature vectors might be a **detour**, since eventually only a single number (the covariance) is needed.
- > The marginalized graph kernel is specifically designed to overcome the above issues
 - > Construct implicit feature space formed by joint random walks on the graphs
 - > Built-in symmetry invariance
 - Scales to arbitrary number of atom/bond types

Kashima, Hisashi, Koji Tsuda, and Akihiro Inokuchi. "Marginalized Kernels between Labeled Graphs." In Proceedings of the 20th International Conference on Machine Learning (ICML-03), 321–328, 2003.

Ferre, Haut, Barros. "Learning molecular energies using localized graph kernels." J. Chem. Phys. 146, 114107 (2017)

Tang & de Jong, J Chem Phys, 2019: Prediction of atomization energy using graph kernel and active learning https://doi.org/10.1063/1.5078640

Gaussian Process Regression using the Marginalized Graph Kernel

9/6/2019

16

Convert 3D molecular geometry to an undirected, weighted graph

- > Atoms as vertices
- > Use an adjacency rule to create edges with weights decaying by distance
 - > For example, a Gaussian adjacency rule

$$w_{ij} = \exp\left[-\frac{1}{2}\frac{\left(\boldsymbol{r}_{i} - \boldsymbol{r}_{j}\right)^{2}}{\left(\lambda \ b_{ij}\right)^{2}}\right]$$

- > b_{ij} is the average bond length between elements
- > λ is a linear scaling factor

9/6/2019

Formation of Product Graph

- > A product graph is a graph where
 - a vertex is a pair of vertices, each from a smaller graph
 - an edge exists if the two pairs of constituting vertices are both connected in the smaller graph

Perform random walk on the graph, and sum over path similarity

- Jump probability proportional to edge weight >
- Stopping probability determines average path > length
- Sum over all possible paths of potentially infinite length

Marginalized graph kernel: computation

$$K(G,G') = \sum_{l=1}^{\infty} \sum_{h} \sum_{h'} p_{s}(h_{1}) p_{s}'(h_{1}') K_{v}\left(v_{h_{1}}, v_{h_{1}'}'\right) \prod_{i=2}^{l} p_{t}(h_{i}|h_{i-1}) p_{q}(h_{i}) \prod_{j=2}^{l} p_{t}'\left(h_{j}'|h_{j-1}'\right) p_{q}'(h_{i}') \prod_{k=2}^{l} K_{e}\left(e_{h_{k-1}h_{k}}, e_{h_{k-1}'h_{k}'}\right) K_{v}\left(v_{h_{k}}, v_{h_{k}'}'\right)$$

A (slightly) more friendly version of the kernel is

$$K(G,G')=\mathbf{s}_{\times}\cdot\mathbf{R}_{\infty},$$

where R_{∞} can be solved from

$$[\mathbf{D}_{\times}\mathbf{V}_{\times}^{-1} - \mathbf{A}_{\times} \odot \mathbf{E}_{\times}] \mathbf{R}_{\infty} = \mathbf{D}_{\times} \mathbf{q}_{\times}$$

 D_{\times} : vertex degree matrix V_{\times} : vertex label similarity matrix A_{\times} : adjacency matrix E_{\times} : edge similarity matrix q_{\times} : stopping probability

GraphDot: graph kernel made easy

Repository: <u>https://gitlab.com/yhtang/graphdot</u> PyPI: https://pypi.org/project/graphdot/

Documentation: https://graphdot.readthedocs.io/en/latest/

- > Fully featured: for and beyond molecules!
 - > Weighted graphs with both nodes and edges labeled
 - > Arbitrary attributes and custom base similarity kernels

> GPU-accelerated

- > Just-in-time code generation and compilation
- > 100x speedup compared to existing CPU packages such as GraKeL and graphkernels
- > Interoperable with ASE, NetworkX, pymatgen
 - > Scikit-learn compatible python interface

	graphdot 0.1.4						
	pip install graphdot 🗳						
	GPU-accelerated graph similarity algorithm library						
Project description							
Project details							
Release history							
	🛓 Download files						
	Project description						
The GraphDot Library							
	pipeline passed coverage 99.00% License BSD 3-Clause						
Documentation							
	Read the latest documentation on <u>readthedocs</u> .						

9/6/2019

Example & benchmark

- > QM7: 7165 small organic molecules consisting of H, C, N, O, S, up to 23 atoms
 - From scratch training time: N = 1000: 10 s training, 0.018 s/sample predicting, N = 2000: 40 s training, 0.034 s/sample predicting
- Supervised learning: use predictive error to determine the next sample
- > Unsupervised active learning: use predictive variance

BERKELEY LAB

Active Learning

Summary

- > Active learning using GPR can be powerful for predicting molecular properties
- The marginalized graph kernel is an ideal covariance function for Gaussian process regression of molecular energy
- The GraphDot library is a high-performance and easy-to-use python package for graph kernel computations

Thank you!

Acknowledgment

- LBNL LDRD Project "Active Learning of Ab Initio Force Fields with Applications to Large-Scale Simulations of Materials and Biophysical Systems"
- Work also supported in part by the Applied Mathematics program of the DOE Office of Advanced Scientific Computing Research under Contract No. DE-AC02-05CH11231, and in part by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

Marginalized graph kernel: application

- > The elements of \mathbf{R}_{∞} can be interpreted as an **atom-wise similarity matrix**
- > The sum of the elements of R_{∞} , before normalization, defines a kernel that allows automatic scaling when predicting extensive variables

9/6/2019

Example & benchmark

- > QM7: 7165 small organic molecules consisting of H, C, N, O, S, up to 23 atoms
 - From scratch training time: N = 1000: 10 s training, 0.018 s/sample predicting, N = 2000: 40 s training, 0.034 s/sample predicting

