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Predicting Molecular Properties

› Many molecular properties are functions of their structure

› Energy/force

› Chromatography

› Reactivity

› But experimentation/computation to acquire the properties can be expensive

› Quantum mechanical computations

› Large amount of sampling

› Experiment setup

› Plus, the search space for chemical elements are combinatorially large

Need for ML algorithm that can not only learn from data, but also can

guide data acquisition
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Gaussian process regression primer

› Conditional distributions of a multivariate normal: given three unit Gaussian random 

variables A, B, and C, and their covariance matrix Σ, can we infer the value of C if A and B 

is known?
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Given Observe Intuition

A=2 Cov[A,C]=0.9 C should be close to 2

B=3 Cov[B,C]=0.8 C should also be close to 3

Conclusion: C is probably somewhere between 2 and 3

› The above inference have a closed-form solution

𝜇 𝐶 =
0.9
0.8

T
1 0.3
0.3 1

−1
2
3

≈ 2.733

Var 𝐶 = 1 −
0.9
0.8

T
1 0.3
0.3 1

−1
0.9
0.8

≈ 0.027

With 95% confidence

𝐶 = 2.733 ± 0.054



Gaussian process regression (GPR) for supervised learning

› Given a few sample points (i.e. training data) from a hidden function, can GPR infer what 

the function is?

› Yes, assuming covariance is a function of distance, e.g. 𝐾 𝑥1, 𝑥2 = exp −
1

2

𝑥1−𝑥2
2

𝜎2
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Active learning of potential energy curve using GPR

› Next training point decided on-the-fly, guided by GP’s predictive uncertainty
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The previous example was cheating

› Carried out as a 1D GPR on the real line

› Problem

How to define covariance functions between molecules?

› Hint: it is our belief that similar molecules have covariate properties

› covariance is statistician’s way for describing ‘similarity’ between random variables

› Need for similarity quantification between atomistic configurations
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Similarity functions between molecules: challenges

› Variable degrees of freedom › Discrete label/topology space
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Similarity functions between molecules: challenges

› Smoothness
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Similarity functions between molecules: challenges

› Symmetry adaptation
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Similarity comparison via feature vectors: detour?

› Well-known fundamental similarity functions

› The cosine similarity: based on angle (similar if pointing in the same direction)

› Square exponential RBF: based on L2 distance (similar if close in space)

› For molecules: apply the cosine/Gaussian similarity function on a molecular feature 

vector

› Behler-type symmetry functions: Behler. J Chem Phys. 2011

› Eigenspectrum of coulomb matrix: Rupp et al. PRL. 2012

› SOAP: spherical harmonics expansion of density. Bartó k et al. PRB. 2013

› Bispectrum of mass density. Bartó k et al. PRL. 2010

› DECAF: optimal quadrature expansion of density + canonical alignment

› Y.-H. Tang et al. JCP. 2018: An atomistic fingerprint algorithm for learning ab initio molecular force 

fields https://doi.org/10.1063/1.5008630

› J Chem Phys 2018 Editors’ Choice

› and hundreds more...
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Similarity between structured data

› Molecules are intrinsically graphs with

› Variable numbers of nodes and edges

› Non-sequential connectivity between components

› Explicit feature vectors might be a detour, since eventually only a single number (the 

covariance) is needed.

› The marginalized graph kernel is specifically designed to overcome the above issues

› Construct implicit feature space formed by joint random walks on the graphs

› Built-in symmetry invariance

› Scales to arbitrary number of atom/bond types
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Gaussian Process 

Regression using 

the Marginalized 

Graph Kernel
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Convert 3D molecular geometry to an undirected, weighted graph

› Atoms as vertices

› Use an adjacency rule to create edges with weights decaying by distance

› For example, a Gaussian adjacency rule

𝑤𝑖𝑗 = exp −
1

2

𝒓𝑖 − 𝒓𝑗
2

𝜆 𝑏𝑖𝑗
2

› 𝑏𝑖𝑗 is the average bond length between elements

› 𝜆 is a linear scaling factor
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Formation of Product Graph

› A product graph is a graph where

› a vertex is a pair of vertices, each from a 

smaller graph

› an edge exists if the two pairs of 

constituting vertices are both connected in 

the smaller graph
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Perform random walk on the graph, and sum over path similarity

› Jump probability proportional to edge weight

› Stopping probability determines average path 

length

› Sum over all possible paths of potentially 

infinite length
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Marginalized graph kernel: computation
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A (slightly) more friendly version of the kernel is

𝐾 𝐺, 𝐺′ = 𝐬× ⋅ 𝐑∞,

where 𝑅∞ can be solved from

𝐃×𝐕×
−1 − 𝐀× ⊙𝐄× 𝐑∞ = 𝐃× 𝐪×.

𝐃×: vertex degree matrix

𝐕×: vertex label similarity matrix

𝐀×: adjacency matrix

𝐄×: edge similarity matrix

𝐪×: stopping probability



GraphDot: graph kernel made easy

Repository: https://gitlab.com/yhtang/graphdot

PyPI: https://pypi.org/project/graphdot/

Documentation: https://graphdot.readthedocs.io/en/latest/

› Fully featured: for and beyond molecules!

› Weighted graphs with both nodes and edges labeled

› Arbitrary attributes and custom base similarity kernels

› GPU-accelerated

› Just-in-time code generation and compilation

› 100x speedup compared to existing CPU packages such as 

GraKeL and graphkernels

› Interoperable with ASE, NetworkX, pymatgen

› Scikit-learn compatible python interface 
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Example & benchmark

› QM7: 7165 small organic molecules consisting of H, C, N, O, S, up to 23 atoms

› From scratch training time: N = 1000: 10 s training, 0.018 s/sample predicting, N = 2000: 40 s 

training, 0.034 s/sample predicting
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› Supervised learning: use predictive error 

to determine the next sample

› Unsupervised active learning: use 

predictive variance



Summary

› Active learning using GPR can be powerful for predicting molecular properties

› The marginalized graph kernel is an ideal covariance function for Gaussian process 

regression of molecular energy

› The GraphDot library is a high-performance and easy-to-use python package for graph 

kernel computations
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Marginalized graph kernel: application
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› The elements of 𝐑∞ can be interpreted as an atom-wise similarity matrix

› The sum of the elements of 𝐑∞, before normalization, defines a kernel that allows 

automatic scaling when predicting extensive variables
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Example & benchmark

› QM7: 7165 small organic molecules consisting of H, C, N, O, S, up to 23 atoms

› From scratch training time: N = 1000: 10 s training, 0.018 s/sample predicting, N = 2000: 40 s 

training, 0.034 s/sample predicting
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