

Molecular Signatures of Enhanced Oil Recovery in Shale Organic Pores

The UNIVERSITY of OKLAHOM

Mewbourne School of Petroleum

and Geological Engineering

Felipe Perez[†] and Deepak Devegowda [†] felipe.perez@ou.edu

1. Background

- Oil and natural gas are mainly stored in pores in organic matter in shale rocks.
- The size of the organic pores in shales ranges from a few to a couple hundred nanometers.
- Permeability of shale rocks is of the order of nanodarcies.
- Horizontal drilling and hydraulic fracturing have made oil and gas extraction possible in nanoporous shale plays.
- Hydrocarbon recovery from shale reservoirs is less than 10%.
- Can we inject a solvent to extract more hydrocarbons?

3. Interaction with a solvent during soaking time

- Huff-and-puff (cyclical injection) steps:
 - 1. Inject fluid
 - 2. Soaking period
 - 3. Resume production
- n-butane molecules have a higher mobility in the absence of a solvent, thus they can be preferentially produced over n-octane at same conditions.
- n-octane molecules slide along the surface of kerogen and travel to the kerogen-microfracture interface to remain adsorbed there.
- The solvent enters the pores in kerogen and is able to desorb, extract and potentially recover molecules that could not be produced by primary depletion.
- Even in the presence of a solvent, dimethylnaphthalene remains adsorbed onto the organic pore surface.

4. Conclusions

- The use of solvents may enhance the recovery of species that could not be produced during primary depletion.
- Solvent efficiency is not the same for every hydrocarbon component. The design of an enhanced oil recovery project must take into account the type of molecules being targeted.

Acknowledgments

The computing for this project was performed at the OU Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma.

References

[1] Xianfu Huang and Ya-Pu Zhao. Characterization of pore structure, gas adsorption, and spontaneous imbibition in shale gas reservoirs. Journal of Petroleum Science and Engineering, 159:197–204, 2017.