Molecular dynamics study on defect formation in SiC film

Kenji Nishimura¹), Koji Miyake¹), and Ken-ichi Saitoh²) 1) National Institute of Advanced Industrial Science and Technology (AIST) 2) Kansai University

Highlights

- Our molecular dynamics simulations have revealed the dependence of temperature and crystallographic orientation on defect formation in single crystalline SiC.
- High temperature causes the transition of formed defects from perfect dislocations to partial dislocations with stacking faults.
- Impressions after nanoindentation exhibit obvious crystal anisotropy on its symmetry and pileup patterns.

Introduction

Silicon carbide (SiC) is a promising candidate as a semiconductor for nextgeneration power electronics devices. Despite numerous experimental studies, it is still a great challenge to understand mechanical properties and defect formation process at an atomistic level. Objectives: To clarify plastic deformation mechanism and defect formation criteria in SiC.

Nanoindentation¹

Nanoscratch²

Results and discussion

Load – displacement curves

(001) indent

Transition from pure elastic to elastic-plastic deformation, known as pop-in event, is observed. Elastic response does not depend on temperature. In contrast, elastic-plastic curves shift downward with increasing temperature.

<u>Pop-in criteria</u>

¹Matsumoto *et al.*, J.Phys. D: Appl. Phys. **50**, 265303 (2017). ²Sako *et al.*, J. Appl. Phys. **119**, 135702 (2016).

Method

Nanoindentation

Simul	lation	conditions

Property	Value
Temperature [K]	300, 1000 1500, 2000
Number of atom	1150000
Indenter radius [nm]	8.72
Indent surface	(001), (111)
Pushing speed [m/s]	1.0
Maximum depth [nm]	5.0

Extended CNA analysis

DXA analysis³

(001) indent

(111) indent

Projected contact surface is circle even at high temperature. (111) plane has higher resistance against plastic deformation than (001) at lower temperature.

DXA

Characteristics of lattice defects, (111)

Extended CNA

300 K 2000 K

● HCP ● BCC ● Other

2000 K

- Partial — Other — Perfect

Perfect dislocations are dominant at low temperature, whereas partial dislocations with stacking faults dramatically increase at high temperature.

SiC crystal structure is composed of the superposition of Si and C sublattice. After removing C atoms, CNA (Common Neighbor Analysis) is applied to Si sublattice. DXA (Dislocation Extraction Algorithm) identify all dislocations in crystal, determine their Burgers vectors, and output dislocation lines.

³A. Stukowski *et al.*, Modelling Simul. Mater. Sci. Eng. **20**, 085007 (2012).

