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N We include a volume dependent term in the approximation to the many-body potential of mean Ucg (R) = U, (R) + U, (R) We include a local density potential in our basis set of
W(Ra V) Ur (R) + Uy (V) force (PMF). In principle, the volume dependent function could contain more terms, but we coarse-grained particle interactions. The local density
UR(R) = U, (R) 1 Unb(R) typically find two to be sufficient. The two iteratively optimized coefficients v, and vy, correspond Unb (R) = U (R) Up (R) Is defined by an indicator function, w(r). Although
) to average pressure and compressibility corrections, respectively. The coarse-grained pressure is Up (R) — Z Uy (p I) the local density potential incorporates many body
[ (V) B NK LTw-N (L1 then evaluated a_s the standard formula employed in atomistic simulations plus the coarse-grained 7 effects, the resulting forces have a convenient
v = W V2 pressure correction, F, (V). B Z_ (R;)) pairwise decomposition. Accordingly, it scales
_ _ Pr = WAL similarly to standard non-bonded pair potentials.
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i different CG models of heptane. The £ [ - Figures 7-8. Data from simulations of atomistic methanol (black) and two one site CG models. The first CG model (FM, red) comes from force matching a
CG model employing the optimized £ 10 2 - nonbonded pair force from a bulk liquid simulation. The resulting force field is much too repulsive; the internal pressure of the CG model at atomistic densities is
-100 1 coefficients  (DN)  quantitatively ; o = - N T approximately 3200 bar too high and a liquid slab simulation vaporizes. Adding in a LD potential (LD, green) enables reasonable reproduction of the equation of
| | | | — reproduces the atomistic model’s * -0 E‘ | | [ | | L - state and liquid slab density profile. The LD potential was initially parameterized via pressure matching and then modified.
290 295 300 o
3 VOIUme d|Str|bUt|0n. 0 120 Tcnnpcralltig(l() o0 10 ! | ! | ! | ! | ! | ! ! | ! | ! | ! | ! | ! ' ' ' ' ' ' ' ' '
Volume (nm") | | | 600 | — va oL _ 1 CGl _
0.4 | | ' Figures 4-5 (top right, bottom right). | | | | N - . A S
— | The pressure corrections (a) and () | 400~ — - T 4l | cad |
s Compressibility (bar) | yiolume potential coefficients (b) for g0l — - T 1 6 4 ~ Mapped AA
S 0.3 - ?ﬁ %-g‘l‘ﬂ% simulations of CG models of ethane | — — 25K| - g 2001~ BEES 2
~ : 4 : : < 250 K ~ - . E T 1 E 0.6F —
2 — DA 1.11x10), (Fig 4) and methanol (Fig 5). Lower > -s000[- —_— 25K | — = g £
Z T SDSK }-;5384 temperatures require stronger pressure - 3 = 8- i A }’ “ B
R o2l i Expt | 44x10™ corrections. Furthermore, the v, 6000 58 60 VO]UH%E.("”” & 6 ki " ook | i | T o4t -
o , coefficient varies linearly —with _ »5[Cp)! . — I i | L il
= /N temperature. E o *o—e . v 400 _ 02 .
< . /I z 15 e - U - . i |
E 01_ N B ‘\ .S 15— R 60 l | l 0 l J | l | l | l | | | kl 0 I |
O . 1 2 10 . - 95 . 8 8.1 6 4 2 0 2 4 6 6 10
B ,/ | / \ S sL = N p (nm”) z (nm) p (nm”)
. ' . = L N -
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Conclusion: | the local density. They reasonably reproduce the atomistic equation of state, liquid slab density profile, and local density PDF, respectively.
The USER-BOCS package in LAMMPS implements a correction to the barostat that accounts for the volume dependence of the many-body potential of mean Conclusion:
force. The BOCS software package provides tools to parameterize both the configuration dependent coarse-grained potentials as well as the volume potential. Local density potentials provide the cohesion that is frequently absent from bottom-up coarse-grained models that only use standard pair potentials to describe
The re.sult_mg models are capable of reproducing equations of state for bulk liquids in addition to structural properties. The BOCS software package is available the intermolecular interactions. As a result, the new models can accurately reproduce equations of state and liquid-vapor interfaces. Iterative pressure matching
at http://github.com/noid-group/BOCS and force matching both provide reasonable local density potentials.
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