

Using LAMMPS to Simulate Vapor-Liquid Equilibrium

Introduction

- Rocket engines operate in regions near the critical point of pure component and mixtures
- Understanding the physio-chemical properties of fluids in the near critical region is essential for modeling and understanding of the combustion chamber
- Unfortunately mean field theories (ie: equations of states (EOSs)) fail in the near critical region
- -Due to the correlation length being infinite at the critical point • New theories need to be applied in order to understand the near critical behavior
- MD allows us to probe the near critical region in order to develop these new theories

Calculation Details

- •All simulations were performed within LAMMPS using the OPLS potential (all and united atom)
- •VLE determined by performing a Voronoi analysis and a series of two- and one-phase simulation
- •Law of rectilinear diameters and density scaling law used to determine the critical point

Vapor Liquid Equilibrium

- •Butane and *n*-Dodecane chosen as probe molecules
- •Used the OPLS potential
 - United atom for butane
 - All atom for *n*-dodecane
- Able to simulate temperatures within 1% of the calculated critical point
- critical points for hydrocarbons when compared to experimental Different potentials yield slightly different geometries data -C12 Experimental

John P. Clay¹ ¹ERC, Inc., Edwards AFB, CA 93524

Dihedral Angle (Degree) Terminal C-C Distance (A) Distribution Statement A: Approved for Public Release; Distribution is Unlimited. PA# 19427

Radial Distribution Function

- •Decay of radial distribution function (RDF) is the correlation length
- •The correlation length increases as the critical point is approached
- •First solvation shell for liquid contains more molecules than vapor
- •Supercritical fluid RDF has longer correlation lengths compared to liquid and vapor

- the critical point for different hydrocarbons
- •MD allows for simulations within 1% of the calculated critical temperature
- •As the critical point is approached
- Interface becomes more ragged
- -Molecules can be considered supercritical close to the critical point
- -The correlation length increases

DOD

ERC

- •Different phases sample different regions of the potential
- •The correlation length is the greatest in the supercritical phase and increases as the critical point is approached

Acknowledgements

PARTMENT OF DEFENSE IGH PERFORMANCE COMPUTING

Funding provided by Dr. Chiping Li, AFOSR **Combustion Sciences**