

Ellad B. Tadmor and Ryan S. Elliott

Department of Aerospace Engineering and Mechanics University of Minnesota

<u>Collaborators:</u> James Sethna, Daniel Karls, Matthew Bierbaum, John Hooper.

NSF CDI and CDS&E programs

OpenKIM

Open Knowledgebase of Interatomic Models (OpenKIM)

Project Objectives

- Development of an online open resource for standardized testing long-term warehousing of interatomic models (potentials and force fields) and data.
- Development of an *application programming interface (API)* standard for atomistic simulations, which will allow any interatomic model to work seamlessly with any atomistic simulation code.
- Development of a quantitative *theory of transferability* of interatomic models to provide *guidance for selecting* application-appropriate models based on rigorous criteria, and *error bounds* on results.

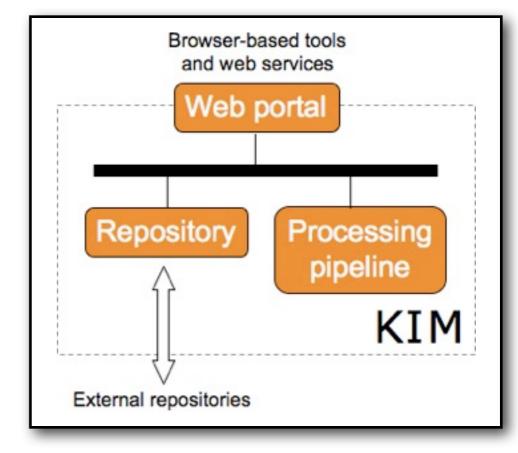
PIs: Ellad Tadmor (U. Minn), Ryan Elliott (U. Minn), James Sethna (Cornell)

Funding: NSF CDI (2009-2014); NSF CDS&E (2014-)

KIM Overview

Repository: A user-extendible database of

- interatomic Models
- standardized Tests (simulation codes)
- Predictions (results from Model-Test couplings)
- Reference Data (obtained from experiments and first principles calculations)


Web portal: A web interface that facilitates:

- user upload and download of Tests, Models, and Reference Data
- searching and querying the repository
- comparing and visualizing Predictions and Reference Data
- recording user feedback

Processing pipeline: An automatic system for generating *Predictions* by

mating Tests and Models in the KIM Repository.

- puts the "knowledge" in "knowledgebase"
- employs virtual machines and cloud-based computing

KIM Philosophy on an Interatomic Model

An interatomic model (IM) can be understood to mean different things.

Consider the following views of the Lennard-Jones (LJ) potential:

I. The functional form of LJ:

$$\phi(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$$

II. The LJ parameter set for a given material:

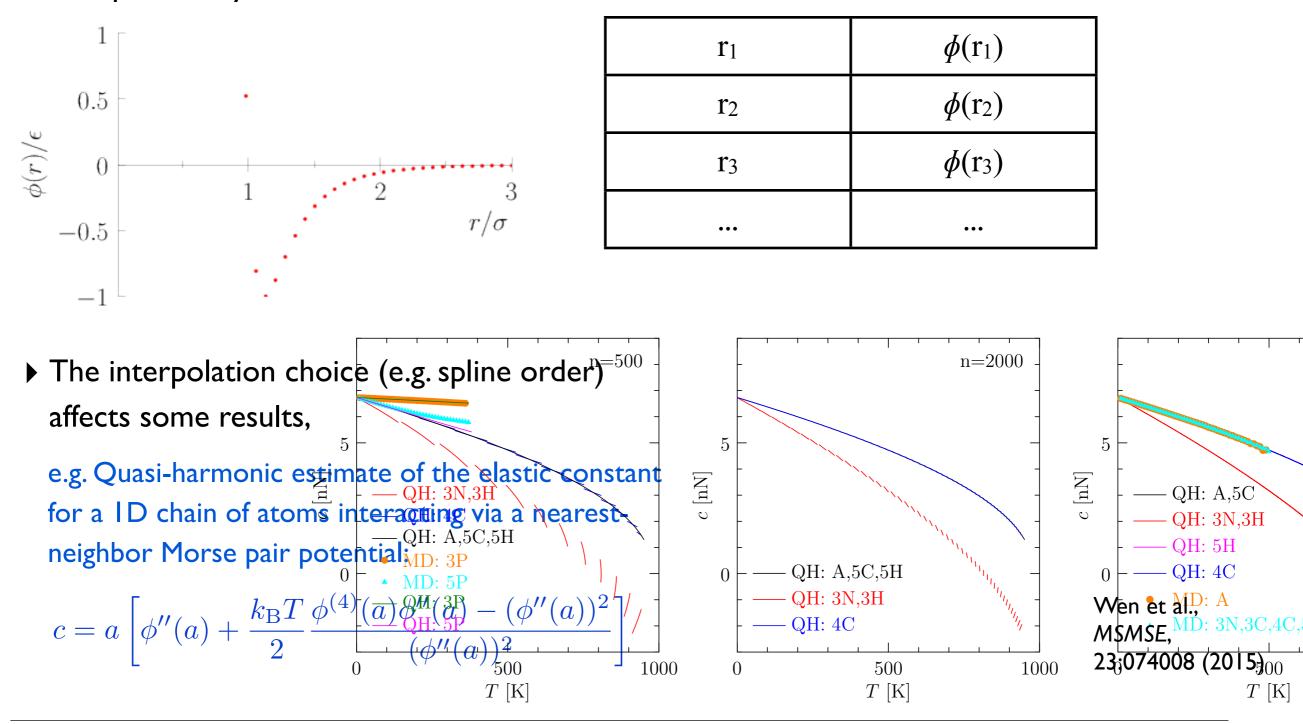
Argon $\epsilon = 0.0104 \text{ eV}$ $\sigma = 3.40 \text{ Å}$

This is common in EAM potentials where the parameter file is considered to be *the* potential. III. A computer implementation of the LJ potential:

```
subroutine ljpotential(r,sig,eps,func,dfunc,d2func)
implicit none
```

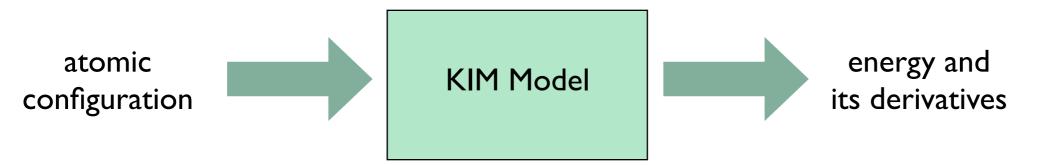
```
!-- Transferred variables
double precision, intent(in) :: r, sig, eps
double precision, intent(out) :: func, dfunc, d2func
```

```
!-- Local variables
double precision rm,rm2,rm6,eos24
```


```
rm = sig/r ! sig/r
rm2 = rm*rm ! (sig/r)^2
rm6 = rm2*rm2*rm2 ! (sig/r)^6
eos24 = 24.0*eps/sig
```

```
func = 4.0*eps*rm6*(rm6-1.0)
dfunc = eos24*rm*rm6*(-2.0*rm6+1.0)
d2func = (eos24/sig)*rm2*rm6*(26.0*rm6-7.0)
```

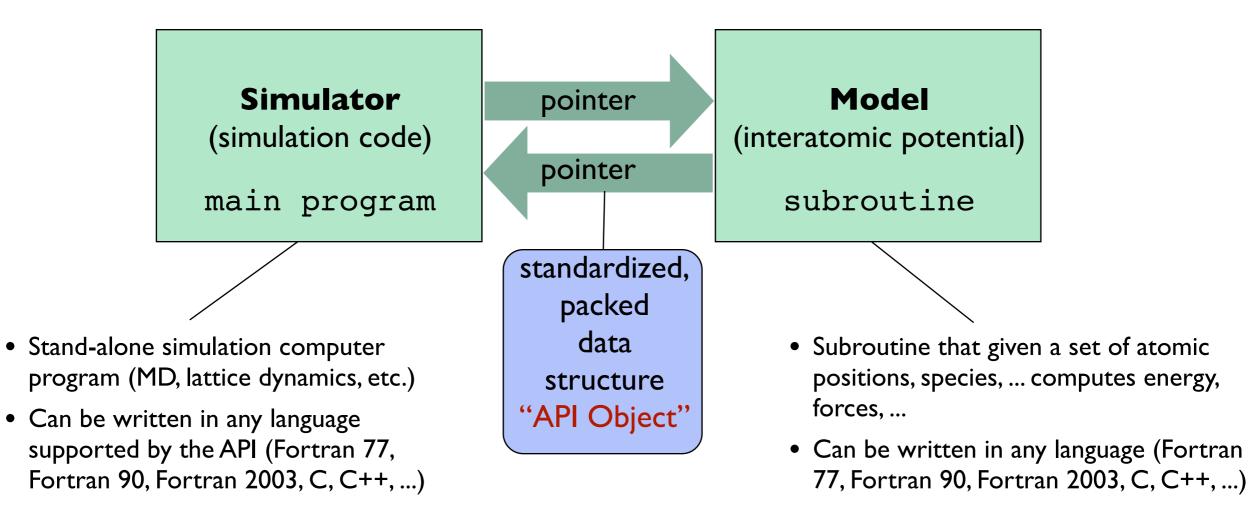
end subroutine ljpotential


Why a is a Parameter Set not enough ?

Interatomic models are often stored as a table of discrete data points that are interpolated by the simulation code:

KIM Models

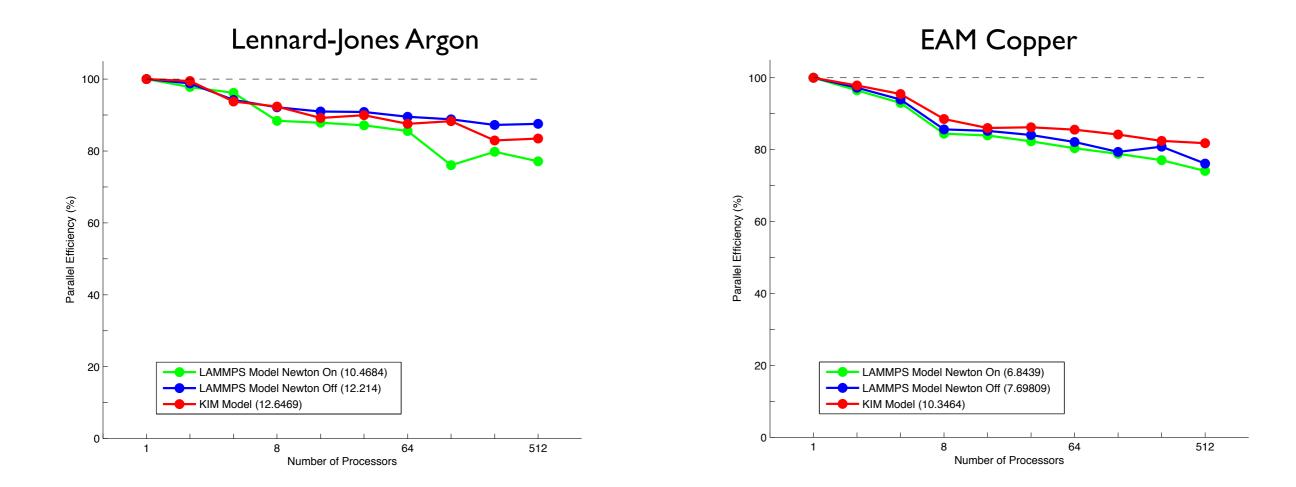
- The KIM framework defines an interatomic model as follows.
 - A KIM Model is an <u>autonomous</u> computational entity:


- KIM Models can have two forms:
 - I. Stand-alone Model for a particular functional form and parameters.
 - 2. Parameterized Model that is read in by a Model Driver; for example:

Lennard-Jones Model Driver:	Material specific LJ Models:
$\phi(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$	Argon; ϵ_{Ar} =10.4 meV, σ_{Ar} =0.340 nm Krypton; ϵ_{Kr} =14.0 meV, σ_{Kr} =0.365 nm
(Computer implementation including any interpolations or other data processing.)	 (Each Model is a parameter file read in by its Model Driver.)

Portability and the KIM API Standard

In order to maximize the portability of KIM Models, an Application Programming Interface (API) standards has been defined for exchanging information between simulators and models.



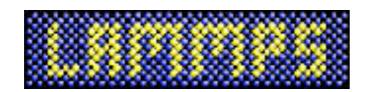
• Currently working on support for electrostatics and charge equilibration.

Efficiency of the KIM API

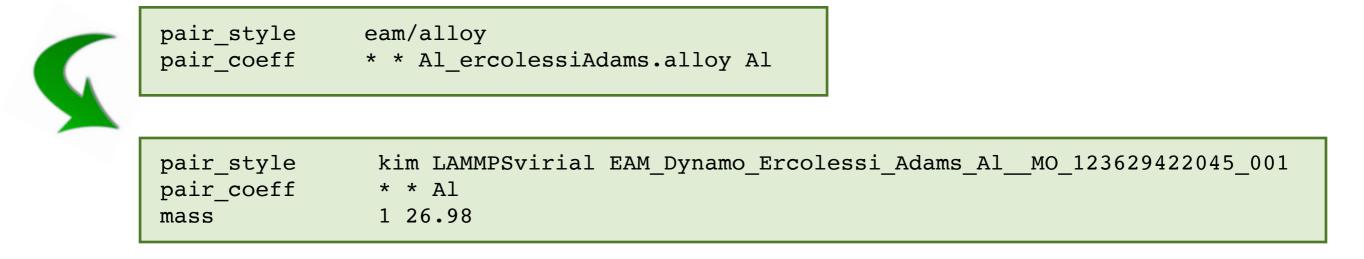
► The KIM API is a lightweight efficient interface.

LAMMPS benchmark results (scaled size with 32,000 atoms per core)

KIM-Compliant Codes

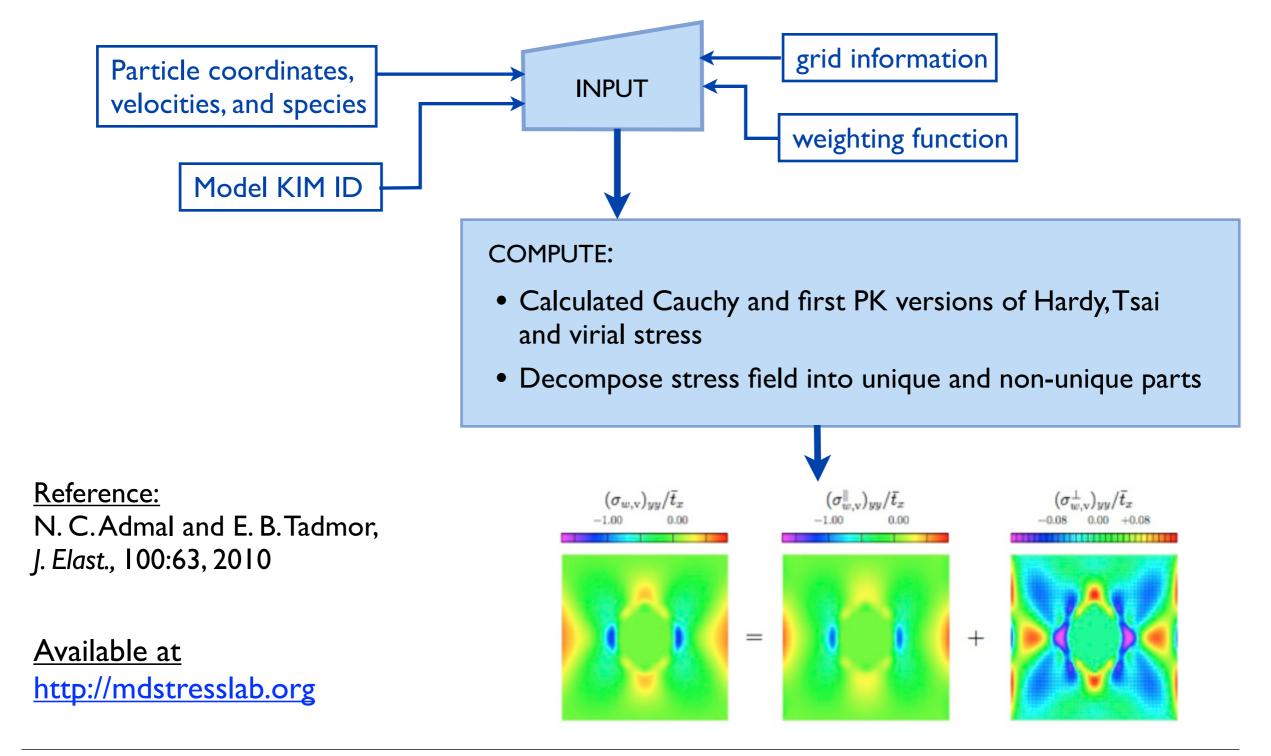

DL_POLY

GULP IMD libAtoms + QUIP



Example: Using KIM Models with LAMMPS

- Using KIM Models with LAMMPS is straightforward:
 - Install the KIM API from source or using binary packages (packages available for Ubuntu, CentOS, Fedora, OpenSUSE, others in development).
 - Precede LAMMPS installation with "make yes-kim"
 - Add the KIM Models that you want to use. (Binary packages have option to add all models.)
 - Replace native potential with pair style KIM and KIM ID



• Run as usual

For more info, see http://lammps.sandia.gov/doc/pair_kim.html

MDStressLab (<u>http://mdstresslab.org</u>)

MDStressLab is a program for computing stress fields from MD simulation results

Model Verification Checks

▶ All KIM Models are subjected to <u>Verification Checks</u> when uploaded to openkim.org.

Mandatory

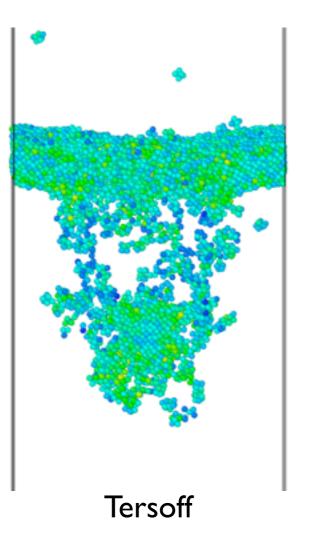
- Species supported as stated;
- Unit conversion handled correctly;
- Domain decomposition handled correctly;
- ...

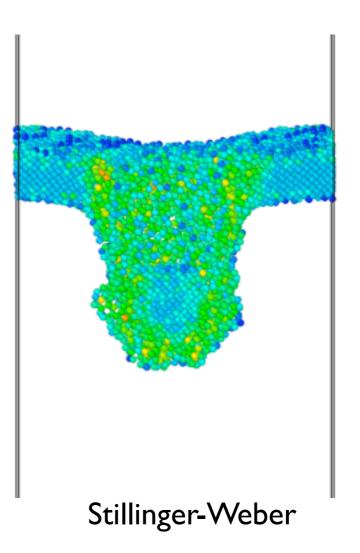
Consistency

- Numerical derivative check of forces, virial, hessian, ...
- Translational and rotational invariance;

• ...

Informational


- Smooth energy, forces, etc. at cutoff;
- Inversion symmetry;
- Coding issues: Dependence on optimiztion, memory leaks, etc.


• ...

A Simulation is only as good as the Potential

The predictive capability of an atomistic simulation is dependent on the fidelity of the interatomic model.

Example: Projectile impacting silicon plate

KIM Tests

- **Test:** A computer program that when coupled with a suitable Model generates one or more Predictions, each of which is associated with a specific KIM Property.
 - Test Types
 - Test (stand-alone test limited to a single case, or a parameter set to a driver)
 - Test Driver + Parameter Set (can work with multiple conditions)

A Test can be a program or an input file to an installed Simulator (e.g. LAMMPS)

- What constitutes a KIM Property?
 - An "ideal" physical property without reference to the algorithmic details of how it is computed (e.g. "melting temperature" as opposed to a specific approach for getting it).
 - A "canonical property", i.e. a basic atomistic property to which Models are often fitted and from which larger-scale behavior might be inferred.

Bulk

- lattice constants - cohesive energy
- elastic constants
- phonon spectrum

- ..

Wall

- surface energy
- surface structure
- gamma surface
- grain boundary structure

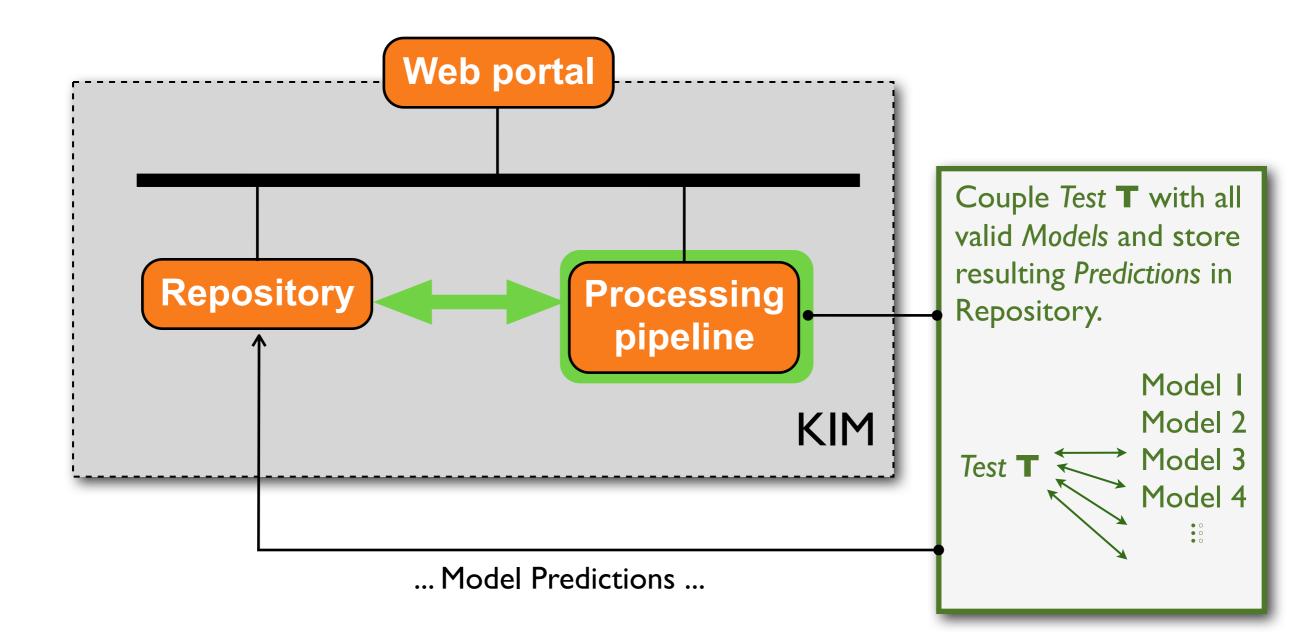
- ...

- Line
- dislocation core structure

- dislocation core energy
- Peierls barrier

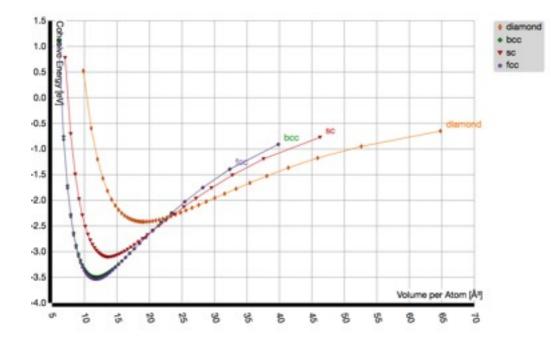
-

Point

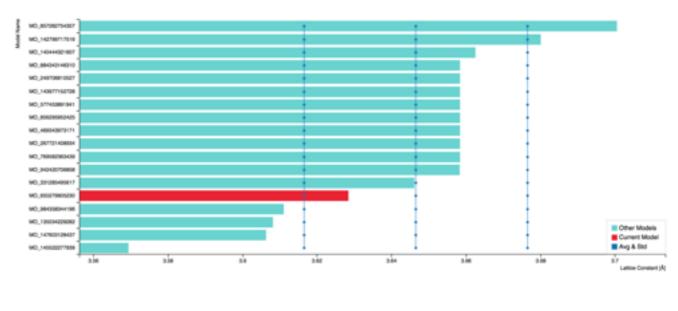

- vacancy formation energy
- vacancy migration barrier

- ...

Ellad B.Tadmor (University of Minnesota)


Interacting with KIM

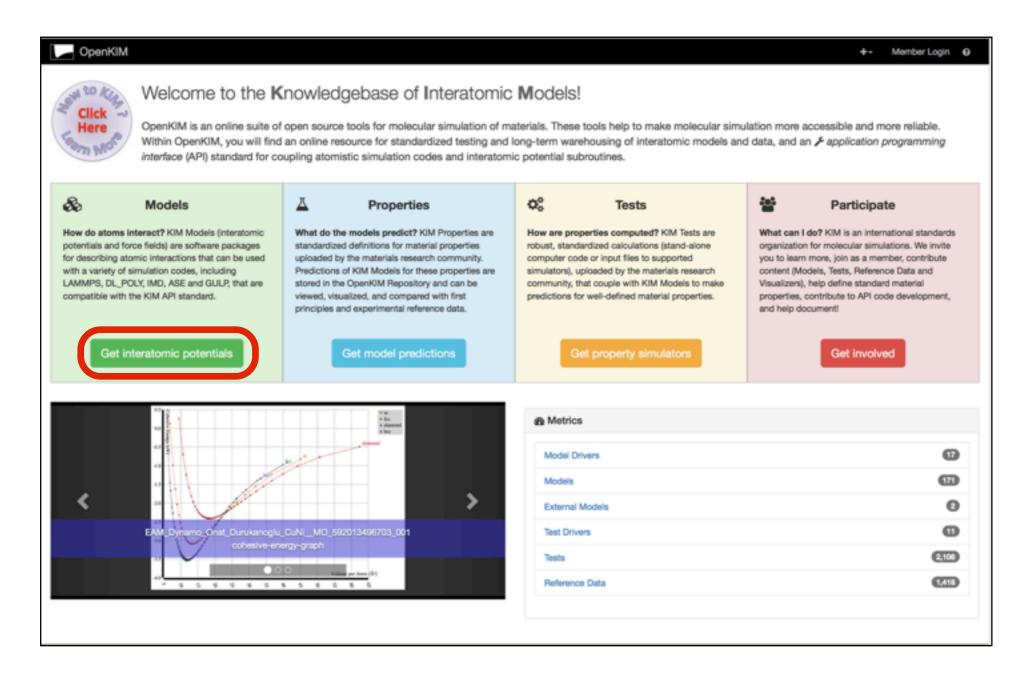
Uploading new KIM Test to the OpenKIM Repository



KIM Visualization

KIM Visualizers are designed to display/analyze Test results (i.e. Property Instances) and are displayed on Model pages.

Cohesive energy curve


FCC Lattice Constant

KIM Visualizers work by

- querying openkim.org to obtain desired Test results (see https://query.openkim.org/)
- plotting the results using Javascript libraries and templates developed in KIM

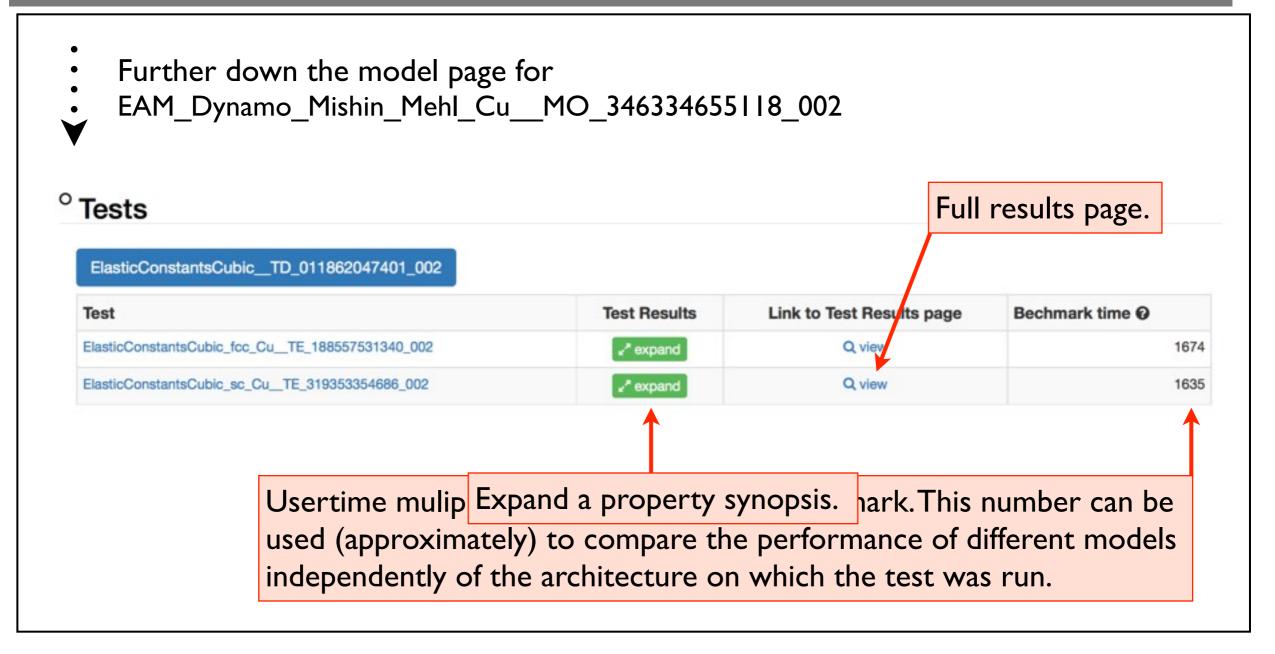
Follow the tutorials to adapt a visualizer to your own needs

► KIM Models are archived on the OpenKIM website <u>https://openkim.org</u> :

OpenKIM

KIM Models

Click on an element in the periodic table for which you need an interatomic model.


KIM Models (interatomic potentials and force fields) are software packages for describing atomic interactions that can be used with a variety of simulation codes, including LAMMPS, DL_POLY, IMD, ASE and GULP, that are compatible with the KIM API standard.

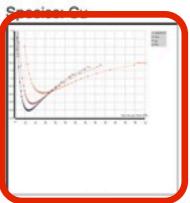
н																	Не
U .	Be											в	с	N	0	F	Ne
Na	Mg	T 0 Models 26 M					T odels		Al	Si	Р	s	СІ	Ar			
к	Ca	Sc	т	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ва		Hf	Та	w	Re	Os	Ir 👘	Pt	Au	Hg	π	Pb	Bi	Po	At	Rn
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
La	Ce	Pr		Nd	Pm	Sm	Eu		Gd	ть	Dy	Но	E	r	Tm	Yb	Lu
Ac	Th	Pa		U	Np	Pu	An		Cm	Bk	CI	Es			Md	No	L.
click here	for index o	n Models															

Cu

Extended KIM ID	Title
EAM_Dynamo_Ackland_Tichy_CuMO_179025990738_001	Finnis Sinclair potential for Cu
EAM_Dynamo_Bonny_Pasianot_FeCuNiMO_469343973171_001	FeCuNi potential to model reactor pressure vessel steels
EAM_Dynamo_Cai_Ye_AlCuMO_942551040047_001	EAM potential for Al-Cu binary system
EAM_Dynamo_Foiles_Baskes_Universal3_CuMO_666348409573_000	Third universal Cu potential of Foiles, Baskes, and Daw; obtained from LAMMPS
EAM_Dynamo_Hoyt_Garvin_PbCuMO_119135752160_001	Embedded Atom Method parametrization of the Pb-Cu system
EAM_Dynamo_Mendelev_King_CuMO_748636486270_001	FS potential for Cu
EAM_Dynamo_Mendelev_Kramer_CuMO_945691923444_001	FS/EAM potential for Cu
EAM_Dynamo_Mendelev_Kramer_CuZrMO_600021860456_001	FS potential for Cu-Zr
EAM Dynamo Mendeley Sordelet CuZr MO 120596890176_001	FS potential for Cu-Zr
EAM_Dynamo_Mishin_Mehl_CuMO_346334655118_001	EAM Cu Potential
EAM_Dynamo_Onat_Durukanoglu_CulatMO_592013490703_001	An optimized EAM potential for Cu-Ni alloys
EAM_Dynamo_Williams_Mishin_CuAgMO_128703483589_001	EAM alloy potential for the Cu-Ag system.
EAM_Dynamo_Wu_Trinkle_CuAgMO_270337113239_001	EAM potential for Cu/Ag(111) Surface Diffusion.
EAM_Dynamo_Zhou_Johnson_CuMO_127245782811_001	EAM alloy potential set table, compatible with LAMMPS
EAM_Johnson_NearestNeighbor_CuMO_887933271505_001	This is an analytical NN EAM model for Cu by Johnson.
EMT_Asap_MetalGlass_CuMgZrMO_655725647552_002	Effective Medium Theory potential for CuMg and CuZr alloys, in particular metallic glasses.
EMT_Asap_Standard_Jacobsen_Stoltze_Norskov_AlAgAuCuNiPdPtMO_118428466217_002	Standard Effective Medium Theory potential for face-centered cubic metals as implemented in ASE/Asap.
MEAM_2NN_Fe_to_GaMO_145522277939_001	Model parameterization of 2NN MEAM model
Pair_Morse_Modified_MacDonaldMacDonald_CuMO_034823476734_000	Modified Morse pair potential for copper due to MacDonald and MacDonald
Pair_Morse_Shifted_GirifalcoWeizer_HighCutoff_CuMO_151002396060_001	This is a Cu Morse Model Parameterization by Girifalco and Weizer using a high accuracy cutoff distance.
Pair_Morse_Shifted_GirifalcoWeizer_LowCutoff_CuMO_673777079812_001	This is a Cu Morse Model Parameterization by Girifalco and Weizer using a low accuracy cutoff distance.
Pair_Morse_Shifted_GirifalcoWeizer_MedCutoff_CuMO_173787283511_001	This is a Cu Morse Model Parameterization by Girifalco and Weizer using a medium accuracy cutoff distance.

EAM_Dynamo_Mishin_Me	ehl_CuMO_346334655118_002	
Title 😡	EAM Cu Potential	Unique archival KIM ID for c
Short KIM ID @	MO_346334655118_002	in papers
Extended KIM ID 0	EAM_Dynamo_Mishin_Mehl_CuMO_346334655118_002	
KIM Item Type 🕢	Parameterized Model using Model Driver EAM_DynamoM	ID_120291908751_002
Contributor	ymishin	
Maintainer	ymishin	
Author	Yuri Mishin	
Publication Year	2016	
Species Ø	Cu	
Description 🕢	EAM Cu potential fit to experimental and first-principles dat	a
Disclaimer Ø		
Source Citations Ø	Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, defects in copper: Ab initio, tight-binding, and embedded-a	
Programming Language(s) 0	N/A	
Link to NIST @	http://www.ctcms.nist.gov/potentials/Cu.html	
	EAM Dynamo Mishin Mehl Cu MO_346334655118_002	Scientific reference for
	Click here to download a citation in BibTeX format.	potential.
Item Citation		•

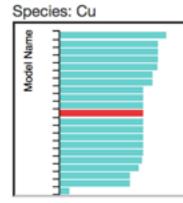
- Further down the model page for
- EAM_Dynamo_Mishin_Mehl_Cu__MO_346334655118_002


^o Tests

ElasticConstantsCubic_fcc_CuTE_188557531340_00	<pre>«[*] expand</pre>	Q view	1674
ElasticConstantsCubic_sc_CuTE_319353354686_002	,⊀ collapse	Q view	1635
Instance-id: 1 Isothermal elastic constants for a cubic crystal at co (For more information, see the property definition elastic Crystal type = ["sc"] a = 2.3928461 angstrom Species = ["Cu"] Basis atom coordinates = [[0.0 0.0 0.0]] Temperature = 0 K Cauchy stress = [0 0 0 0 0 0] GPa			
c11 = 321.391497278 GPa c12 = 24.9933292762 GPa	Elastic constants (note indicating the sc struct	U	

^o Visualizers (in-page)

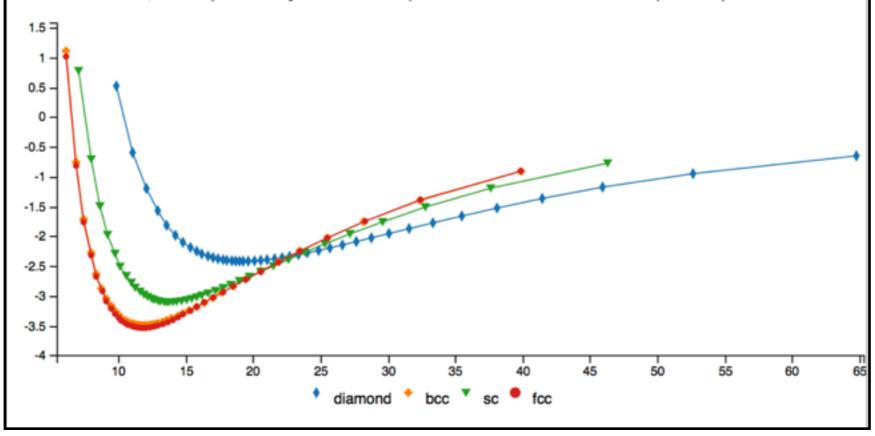
Cohesive Energy Graph


This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

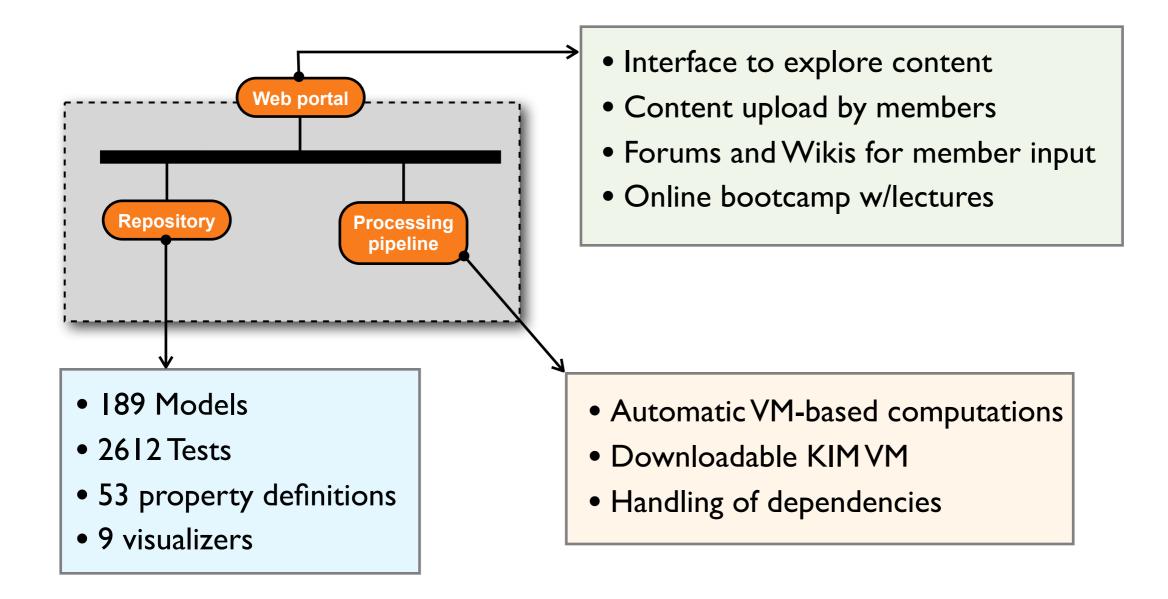
Click on any thumbnail to get a full size image.

FCC Lattice Constant

This bar chart plot shows the mono-atomic face-centered cubic (fcc) lattice constant predicted by the current model (shown in red) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

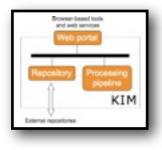


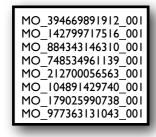
Click on any thumbnail to get a full size image.


OpenKIM

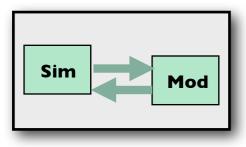
Model: EAM_Dynamo_Mishin_Mehl_Cu__MO_346334655118_001 Species: Cu

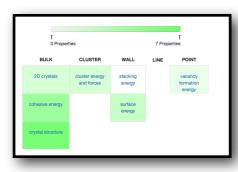
This graph shows the cohesive energy versus volume-per-atom for the current model for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) The curves below are for the species specified above.

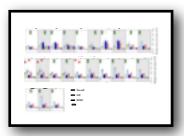

Current Status (August 1, 2017)


Software supporting KIM API:

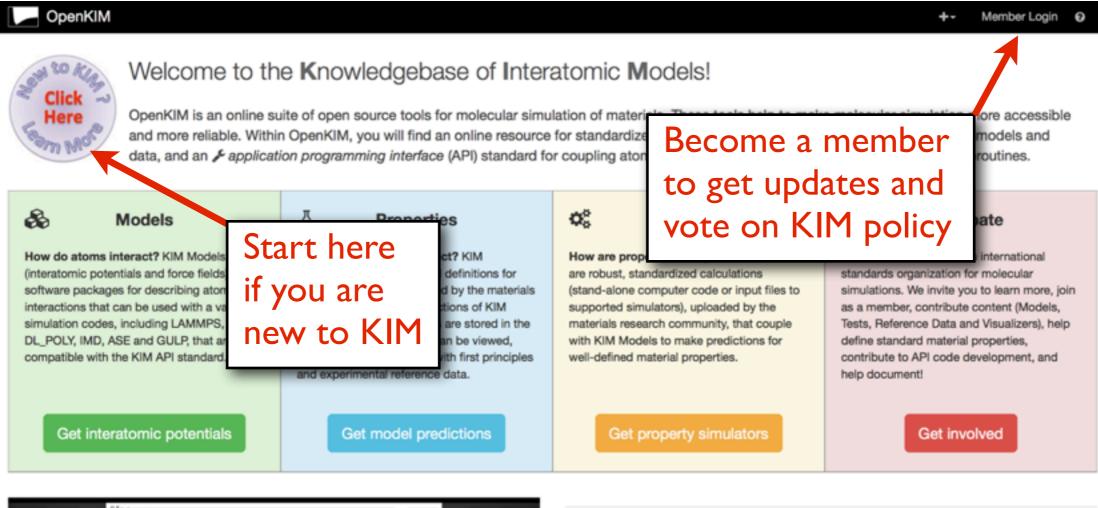
ASAP, ASE, DL_POLY, GULP, IMD, LAMMPS, libAtoms/QUIP, nanoHUB, Potfit, Quasicontinuum, VirtualFab, MDStressLab

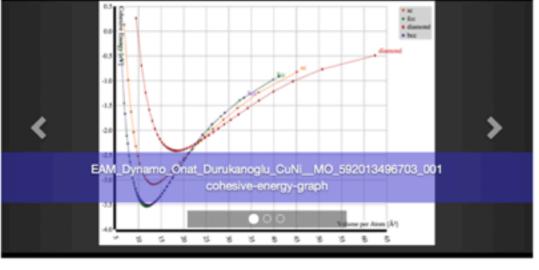

Summary


KIM provides archival permanent storage of interatomic models, tests, and reference data with known provenance.


All KIM content is citable with unique permanent identifiers. This makes it possible to reproduce simulation results in the future.

Models stored in the OpenKIM Repository are portable as they conform to an API that allows them to run seamlessly with any KIM-compliant simulation code.




Models are tested against a user-extendible set of calculations for well-defined material properties using an automated processing pipeline.

Transferability is quantified by estimating the energy error of a new configuration by using Gaussian process regression to interpolate between errors of known configurations.

https://openkim.org

