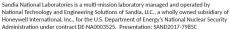

Atomify app: LAMMPS on an iPhone or Android Google for "app store atomify lammps" - Wed AM talk

Welcome and What's New in LAMMPS


Steve Plimpton Sandia National Labs sjplimp@sandia.gov

5th LAMMPS Workshop and Symposium August 2017 - Albuquerque, NM

Thanks

- Logistics: Phyllis Rutka and Christine Trujillo
- Tutorials: Matt Lane, Aidan Thompson,
 Richard Berger, Anders Hafreager
- Breakouts: Ray Shan, Mark Stevens, Dan Bolintineanu,
 Jeff Greathouse, Pieter in 't Veld, Mitch Wood, Stan Moore

Thanks

- Logistics: Phyllis Rutka and Christine Trujillo
- Tutorials: Matt Lane, Aidan Thompson,
 Richard Berger, Anders Hafreager
- Breakouts: Ray Shan, Mark Stevens, Dan Bolintineanu,
 Jeff Greathouse, Pieter in 't Veld, Mitch Wood, Stan Moore
- DOE/NNSA ASC funding for facility/equipment rentals
- JSOL and Materials Design providing lunches!
- Scienomics providing snacks and drinks!

Thanks

- Logistics: Phyllis Rutka and Christine Trujillo
- Tutorials: Matt Lane, Aidan Thompson, Richard Berger, Anders Hafreager
- Breakouts: Ray Shan, Mark Stevens, Dan Bolintineanu,
 Jeff Greathouse, Pieter in 't Veld, Mitch Wood, Stan Moore
- DOE/NNSA ASC funding for facility/equipment rentals
- JSOL and Materials Design providing lunches!
- Scienomics providing snacks and drinks!
- Invited speakers
 - George Karniadakis (Brown), keynote
 - Nir Goldman (LLNL)
 - Amalie Frischknecht (Sandia)
 - Tim Mattox (Engility)
 - Ale Strachan (Purdue)
 - Danny Perez (LANL)
 - Mike Chandross (Sandia)

One invited speaker has an unusual skill

Walter White, chemist

One invited speaker has an unusual skill

Walter White, chemist

Mike Chandross, physicist

One invited speaker has an unusual skill

Walter White, chemist

Mike Chandross, physicist

Winner 2012 Walter White look-alike contest

Social activities

• August is a hot or stormy month to visit ABQ and NM!

- August is a hot or stormy month to visit ABQ and NM!
- Attendees from other countries (registration list)
 - Australia, Brazil, Canada, Chile, China, England, Germany, India, Israel, Japan, Netherlands, Norway, South Korea, Turkey

- August is a hot or stormy month to visit ABQ and NM!
- Attendees from other countries (registration list)
 - Australia, Brazil, Canada, Chile, China, England, Germany, India, Israel, Japan, Netherlands, Norway, South Korea, Turkey
- Thanks for your enthusiasm for LAMMPS and for helping us make the code more useful and reliable!

- August is a hot or stormy month to visit ABQ and NM!
- Attendees from other countries (registration list)
 - Australia, Brazil, Canada, Chile, China, England, Germany, India, Israel, Japan, Netherlands, Norway, South Korea, Turkey
- Thanks for your enthusiasm for LAMMPS and for helping us make the code more useful and reliable!
- Please talk to LAMMPS developers whenever/wherever you can find us. Or just send us an email.

New interatomic potentials (pair styles)

- MGPT from first-principles quantum DFT
 - Tomas Oppelstrup & John Moriarty (LLNL)
 - simplified model for generalized pseudopotential theory
 - d-band transition metals
- SMTBQ tight-binding model
 - Nicolas Salles, Emile Maras, Olivier Politano, Robert Tetot (LAAS-CNRS, France)
 - second moment tight-binding with QEq
 - metal oxides
- Vashishita 3-body potential
 - Yongnan Xiong (Hunan U)
 - Coulombics and bond-angle energies
 - inorganic compounds
- Gao-Weber 3-body potential
 - German Samolyuk (ORNL)
 - Si and C. also ZBL option

New optimized versions of popular potentials

MEAM

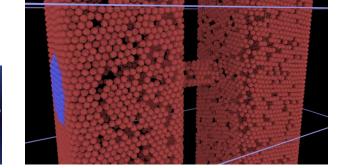
- Sebastian Hutter (Otto-von-Guericke U, Germany)
- MEAM/C version of Fortran MEAM potential
- can now be used with pair hybrid

ReaxFF

- Kokkos version:
 Ray Shan (Materials Design) & Stan Moore (Sandia)
- OpenMP version: Metin Aktulga (MSU)
- faster, more memory efficient, more robust

CHARMM + CMAP

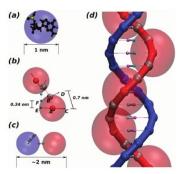
- Robert Latour (Clemson U) and collaborators
- new fix cmap command for CHARMM 5-body interactions
- new versions of CHARMM pair styles (cut and long) that exactly match current CHARMM ff


New USER-DPD package

- Jim Larentzos, Tim Mattox, John Brennan (ARL and Engility Corp)
- Dissipative particle dynamics for energetic materials
- DPD for solids and reactions (!)
- Energy-conserving integrators for NVE, NVT, NPT
- 10000x speed-up vs all-atom models due to length/time scales

- THE ATTEMPT OF IS DELY BEING TO THE DELY BEING THE RESIDENCE OF THE SECOND CONTRACTOR OF THE SEC
 - Shock wave thru 40x40x2500 nm³ polycrystalline sample
 - Wed AM talk by Tim

New USER-MANIFOLD package


- Stefan Paquay & Remy Kusters (Eindhoven U of Tech, Netherlands)
- Constrained motion on arbitrary 2d surface (manifold)
- User can define new manifolds

New USER-CGDNA package

- Oliver Henrich (U Strathclyde and U Edinburgh, UK)
- Coarse-grained DNA model
- Simulate sequence-specific strands
- Setup tools for single- and double-helices

• Fosado & Henrich, et al, Soft Matter, 12, 9458 (2016).

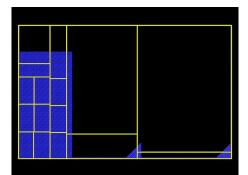
Automated installation of external libraries

- Some packages require pre-build of provided or external libraries
- See lammps/lib in distro: atc, colvars, kim, mscg, voronoi, etc
- All of them now have an Install.py script
- Can download, install, build external libs this way

Automated installation of external libraries

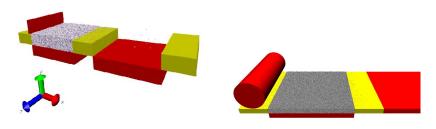
- Some packages require pre-build of provided or external libraries
- See lammps/lib in distro: atc, colvars, kim, mscg, voronoi, etc
- All of them now have an Install.py script
- Can download, install, build external libs this way
- KIM example:

```
make lib-kim  # see help
make lib-kim args="-b . OpenKIM"  # all models
make yes-kim
make mpi
```


Weighting options for dynamic load balancing

- Axel Kohlmeyer (Temple U)
- Geometric balance of particle count per processor
- Can now weight particles based on CPU time, group, neighbor count, or per-atom variable

Weighting options for dynamic load balancing


- Axel Kohlmeyer (Temple U)
- Geometric balance of particle count per processor
- Can now weight particles based on CPU time, group, neighbor count, or per-atom variable

2d SPH "water" flowing over a dam Georg Ganzenmueller (Ernst Mach Institute, Germany)

Additive manufacturing with granular materials

Dan Bolintineanu (Sandia), Tues PM talk Powder processing:

- Granular models: normal/tangential forces, friction, history
- Geometric regions become boundaries on granular particles
- Regions can move or rotate
- Enabled by new fix wall/gran/region command

LAMMPS app for your phone

- Anders Hafreager (U Oslo, Norway)
- Wed AM talk, right before lunch
- Atomify app, available from Apple app store
- iOS or Android (phone), Mac, or browser
- On-the-fly high-quality viz and plotting
- Edit script parameters

LAMMPS app for your phone

- Anders Hafreager (U Oslo, Norway)
- Wed AM talk, right before lunch
- Atomify app, available from Apple app store
- iOS or Android (phone), Mac, or browser
- On-the-fly high-quality viz and plotting
- Edit script parameters
- Why run molecular dynamics on a phone?
- At least two uses:
- Give a this-is-what-I-do elevator speech to your boss or funder

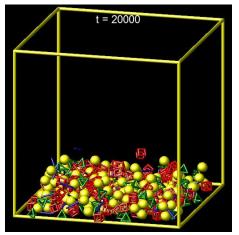
LAMMPS app for your phone

- Anders Hafreager (U Oslo, Norway)
- Wed AM talk, right before lunch
- Atomify app, available from Apple app store
- iOS or Android (phone), Mac, or browser
- On-the-fly high-quality viz and plotting
- Edit script parameters
- Why run molecular dynamics on a phone?
- At least two uses:
- Give a this-is-what-l-do elevator speech to your boss or funder
- Stress-test your cell phone battery

New and enhanced featuresn (1)

- Development via GitHub
 - https://github.com/lammps/lammps
 - Axel Kohlmeyer & Richard Berger (Temple U)
 - Preferred way to report bugs & submit new code
 - Great way to stay current with LAMMPS distro
 - Entire tutorial on it this AM, see PDFs
- More ways to invoke Python code from your input script
 - Richard Berger (Temple U), Wed AM talk
 - variable python, pair python, fix python
 - see doc/Section_python.html for details

New and enhanced features (2)


- Fix controller command
 - Aidan Thompson (Sandia)
 - control loop with feedback (PID)
 - adjust one parameter, monitor another
 - zoom in on melting temperature
 - adjust pressure via wall position
- NEB command for barrier heights
 - now allow multiple MPI tasks per replica
 - Emile Maras (CEA, France) added options for more efficient inter-replicas forces and first/last replicas

New and enhanced features (3)

- Coupling LAMMPS to quantum codes
 - Two density-function tight-binding codes
 - DFTB+, Nir Goldman (LLNL), Tues PM talk
 - LATTE, Christian Negre (LANL), Thurs AM talk
 - plans for NWCHEM and possibly VASP, already QE
- Fix mscg command
 - Lauren Abbott (Sandia) & Jacob Wagner (U Chicago)
 - enables use of Voth group MSCG library to fit CG potentials
 - Soft matter breakout
- Fix halt command
 - stop a simulation run based on evaluated variable criterion

Coming attractions (1)

- Body-style aspherical granular particles
 - Trung Nguyen (Northwestern U)
 - 2d and 3d rounded polygon Langston potentials

Coming attractions (2): New benchmarking web page

- Stan Moore, Performance breakout
- Supported hardware via 5 acceleration packages:
 - CPUs: Vanilla, OPT, USER-OMP, Intel/CPU, Kokkos/OMP
 - KNLs: Intel/KNL, Kokkos/KNL
 - GPUs: GPU, Kokkos/Cuda

Coming attractions (2): New benchmarking web page

- Stan Moore, Performance breakout
- Supported hardware via 5 acceleration packages:
 - CPUs: Vanilla, OPT, USER-OMP, Intel/CPU, Kokkos/OMP
 - KNLs: Intel/KNL, Kokkos/KNL
 - GPUs: GPU, Kokkos/Cuda
- Goal of webpage: help users run as fast as possible
- Give the details:
 - several benchmark problems on several machines
 - how LAMMPS was built (makefiles) with packages
 - how each package was run (mpirun and LAMMPS options)
 - tarballs with input/output files
- Plots and Tables:
 - best performance of any package on different hardware
 - relative performance of packages on CPU or KNL or GPU
 - for each plot, each curve, each data point:
 - launch command used
 - link to logfile produced

Coming attractions (3)

- CMake build option for LAMMPS
 - Christoph Junghans (LANL) & Richard Berger (Temple U)
 - short talk in Developers breakout
- Fix react command
 - Jake Gissinger (U Colorado), Tues PM talk
 - define before/after local bond topology for a reaction
 - define criteria for reaction to take place
 - optionally relax system after reaction occurs
- Global and local hyperdynamics
 - in collaboration with Art Voter & Danny Perez (LANL)
 - new hyper, fix hyper/global, fix hyper/local commands

Coming attractions (3)

- CMake build option for LAMMPS
 - Christoph Junghans (LANL) & Richard Berger (Temple U)
 - short talk in Developers breakout
- Fix react command
 - Jake Gissinger (U Colorado), Tues PM talk
 - define before/after local bond topology for a reaction
 - define criteria for reaction to take place
 - optionally relax system after reaction occurs
- Global and local hyperdynamics
 - in collaboration with Art Voter & Danny Perez (LANL)
 - new hyper, fix hyper/global, fix hyper/local commands
- Come to Developers breakout for more details