

Bond Order Potentials for AlCuH and C available from LAMMPS site or us

2015 LAMMPS Users' Workshop and Symposium

UNM Continuing Education Building, NM, August 5-7, 2015

X. W. Zhou, D. K. Ward, M. E. Foster, and J. A. Zimmerman Sandia National Laboratories, USA

This work is supported by a Laboratory Directed Research and Development (LDRD) project. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Wish List for AlCuH Potential

- 1. A high stacking fault energy of Al observed in experiments;
- 2. Properties trends of a variety of stable and metastable structures;
- 3. Al-rich side of the Al-Cu phase diagram;
- 4. A reasonable positive heat of solution of Cu in Al;
- 5. $H2 \Leftrightarrow 2H$ chemical reaction;
- 6. $Al_{1-x}H_x \rightarrow Al + H_2$ and $Cu_{1-x}H_x \rightarrow Cu + H_2$ phase separations;
- 7. Robust MD simulations.
 - (a) Al-Cu phase diagram

(b) crystal structure of the θ and θ ' phases

X. W. Zhou, D. K. Ward, and M. E. Foster, manuscript to be submitted, potential available upon request

Stacking Fault Energy of Al

Model/Exp.	γ100	γ110	γ111	$\gamma_{ m sf}$
EAM-CY	583	631	526	1
EAM-Mishin1	947	1013	873	141
EAM-BAM	1017	1154	1003	85
EAM-VC	862	969	829	71
EAM-MSAH	194	328	138	126
EAM-Zhou	868	958	832	44
EAM-MKBA	495	582	427	125
EAM-JNP	977	1055	910	0
MEAM	903	944	599	141
REAX-LJGS	481	483	427	0
REAX- Ojwang	810	848	711	1
BOP	979	1069	850	133
DFT [38]	1063	1098	987	
Exp. [59,60,61,62]	980-1140	980-1140	980-1140	120-144

BOP captures a high stacking fault energy of Al.

X. W. Zhou, D. K. Ward, and M. E. Foster, manuscript to be submitted, potential available upon request

Property Trends of Al and Cul

Al

Cu

Pretty good property trends for Al and Cu.

Property Trends of AlCu

Heat of Formation vs. Mole Fraction

Pretty good property trends for AlCu.

Property Trends of AlH and CuH

Pretty good property trends for AlH and CuH.

Dilute Heat of Solution of Cu in Al

- 1. Traditionally, heat of solution of Cu in Al is taken as energy change due to taking a Cu atom from Cu pool and putting it in Al pool;
- 2. Should really be the energy change due to taking a Cu atom from Al₂Cu pool and putting it in Al pool;
- Must be a positive number

Results

1.09	
-0.06	
0.14	
0.40	
0.45	

X. W. Zhou, D. K. Ward, and M. E. Foster, manuscript to be submitted, potential available upon request

H₂+H→H+H₂ Chemical Reaction

Hydrogen crystal to H₂ gas

$H_2+H\rightarrow H+H_2$ energy profiles

The BOP we developed has captured the $H_2+H\rightarrow H+H_2$ reaction, paper has been published: X. W. Zhou, D. K. Ward, M. Foster, J. A. Zimmerman, J. Mater. Sci., 50, 2859 (2015).

$Al + H_2$ and $Cu + H_2$ Phase Separation Sandia National Laboratories

(a) $N_H/N_{Cu} = 0.20$ with both Cu and H shown

(b) Only H shown

Phase separation is less pronounced in Al-H (see next slide), but Al forms AlH₃ compound.

Robust MD Simulations

Al and Cu growth without H

Al and Cu growth with H

Al_2Cu (θ and θ ') growth without H

Al_2Cu (θ and θ ') growth with H

Sandia National Laboratories

Dream Wish for C Potential

- 1. Direct MD simulation of graphene;
- 2. Energy transferability between graphene, graphite, diamond;
- 3. Robust MD simulations.

Our goal is to complement the existing C potentials:

- 1. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter, 14, 783 (2002);
- 2. N. A. Marks, Phys. Rev. B, 63, 035401 (2001);
- 3. A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard III, J. Phys. Chem., 105, 9396 (2001).

X. W. Zhou, D. K. Ward, and M. E. Foster, page 1719.

Property Trends

Cluster Energy Trends

Lattice Energy Trends

Cluster Size Trends

Lattice Size Trends

Robust MD Simulations

Graphite ⇔ Diamond Transformation

$$T = 2000 \text{ K}, P = 0.6 \text{ Mbars}$$

$$T = 1600 \text{ K}, P = -0.6 \text{ Mbars (tensile)}$$

Robust MD Simulations:

Graphene Growth

Robust MD Simulations

Nanotube Growth

Conclusions

- 1. Two bop potentials, AlCuH.bop, and C.bop, have been released to lammps package;
- 2. The AlCuH.bop meets the six+ criteria needed to study mechanical properties of AlCu alloys;
- 3. C.bop enables MD simulation of graphene growth.