The Valence Multipole Model: Using small molecules to create a new bond energy expression for Molecular Mechanics

M. C. F. Wander Dept. of Geological Sciences Brigham Young University

The Group

Co-PIs: Prof. Barry Bickmore

Dr. Matthew Wander

MS Students: *Matthew Davis*

Charles Andros

Undergraduate Students:

Kendrick Shepherd Joel Johansen Larissa Lind Rose Frank Kat Robertson Delyn DeHoyos Hannah Checketts John Hunt Bart Yeates Chris Shurtleff Lincoln Gee Josh Whitmer Ashley Jarvie Michael Arnold

Traditional Molecular Dynamics

+ $\sum_{i < j} \sum \frac{q_i q_j}{4\pi\varepsilon_0 r_{ij}}$ U + $\sum_{bonds} \frac{1}{2} k_b (r - r_0)^2 \qquad \longrightarrow \qquad r_0$ + $\sum_{angles} \frac{1}{2} k_a (\theta - \theta_0)^2$ + $\sum_{torsions} k_{\phi} [1 + \cos(n\phi - \delta)]$

Problems with MM

- There isn't really a single ideal bond length or bond angle value for a given bond type.
 - MM structures tend to be too symmetrical
 - Usually can't do coordination number changes
- The number of "adjustable parameters" in a MM model goes up AT LEAST proportionally to the number of atom types squared (often n³ or n⁴).
 - Especially ridiculous in models that allow chemical reactions
 - Exception: Rule-based models, which can do the entire periodic table, but generally suck.
- Models tuned to reproduce experimental data in a VERY NARROW range of chemical scenarios.

The Bond-Valence Model

Definitions:

- Atomic Valence (V_i): a measure of the number of valence electron states available for bonding.
 - Usually taken as the oxidation number
- Bond Valence (s_{ij}): the number of electron pairs involved in a given bond (by sharing and/or electron transfer).
 - Equivalent to "bond order", related to bond length
 - Does not have to be an integer!

Problems With the BVM

- 1. Only addresses bond lengths, not the angular distribution of bonds.
- 2. Since its calibrated for crystals molecules have had big misfits.
- 3. Only addresses polar bonds, not 100% covalent bonds.
- 4. Nobody has a clear idea how bond valence relates to energy.

Wander et al., The use of cation-cation and anion-anion bonds to augment the bond-valence model, Am. Min. 2015.

Johnson's Force Constant Model of Bonding

Valence Multipole Model

 Breaks energy into total bonding (S_{Total}): monopolar, no directionality, Vector (VVS): dipolar, noncentrosymmetric, quadrupole(QVS): centrosymmetric....

• Bickmore et al., Electronic structure effects in the vectorial bondvalence model, Am. Min. 2013

A More Flexible Equation

• One of a family of forms (exp-exp, pow-pow, geometric).

 $|s_{ij}| = (1 - w)(R/R_0)^{-1/B_{pow}} + we^{(R_0 - R)/B_{exp}}$

- Can flexibly and accurately fit anything from triple bonds to bonds as small as a few hundredths of a bond order.
- Suggests ionic-covalent character change around 1v.u.

• Wander et al., AIM analysis and the form of the bond-valence equation, Am. Min. 2015

Energy Expression

 Many body energy (atom centered) composed of only two body terms (Bond Valence Vectors).

$$E_{Total} = \frac{1}{2} V_I D_{E1} \left(\left(\frac{S_{Tot}}{V_I} \right)^B \sqrt{\frac{F_1}{2D_{E1}}} - 1 \right)^2 + k_{VVS} (VVS - VVS_{Ideal})^2 + E_{QV} + E_{Charge}$$

- Bond energy only definable in context of other bonds reaching an atom.
- VVS_{Ideal} depends on number and row number (electronegativities) of atoms surrounding it.

New challenges

 Quality bond energy per unit valence curves essential to getting high accuracy predictions.

AlSiHO Fitting Set Results

• Fitting Set Contains Both Molecules and Crystals

AlHSiO Check Set

- Some outliers: Unsatisfied Valences (Radicals), Bad Vector Sums (Poor H Positions).
- Otherwise errors less than 5kJ/mol/atom.
- Results oxidation state dependent. Reduced Ai Si different force field.

Acknowledgements

- NSF Geobiology and Low Temperature Geochemistry Program
- BYU college of physical and mathematical sciences
 undergraduate mentoring program