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Con4nuum!Fields!from!Simula4ons!
•  Irving!and!Kirkwood!(1950),!and!Noll!(1955)!developed!
a!sta4s4cal!mechanics!framework!to!obtain!con4nuum!
fields!from!par4cle:based!systems!through!ensemble!
averaging!

F ↵ = ma↵ ⇢a = ⇢b+r · �
Classical#Mechanics! Con3nuum#Mechanics!

Sta3s3cal#Mechanics!
Irving?Kirkwood?Noll#(IKN)#Theory!

Microscopic!
Stress#Tensor!

After invoking Liouville’s equation, one finds that for a system in mechanical
equilibrium Admal and Tadmor (2010); Tadmor and Miller (2011)
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where F ↵ is the force on particle ↵ and a⌦ b denotes the dyadic product of
vectors a and b.

If Eq. (4) is used to derive an expression for �, this definition is clearly
non-unique since given any stress � satisfying Eq. (4), we can add any
divergence-free field !, i.e. r · ! = 0, to � with the resulting field � + !

also satisfying this equation. An expression of � that satisfies Eq. (4) by
construction is Irving and Kirkwood (1950); Noll (1955)
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where r
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↵, f↵� are the terms of a force decomposition, F ↵ =PN
�=1 f

↵� satisfying f
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�↵, and B(r↵, r�;x) =
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0 �[(1� s)r↵ + sr� �
x]ds is the bond function that spreads the contribution from the pair ↵� to
the stress along the line segment joining the particles Noll (1955). The choice
of a bond function following the straight path partially fixes the gauge invari-
ance of �. Recently, it has been shown that this is the only possible choice
to obtain a stress field satisfying balance of angular momentum, �ij = �ji

Admal and Tadmor (2010). The gauge is completely fixed by choosing a force
decomposition. Insisting on the symmetry of the stress field, this reference
proposed the central force decomposition (CFD) as the only possible choice
to obtain a symmetric stress by construction.

To define a CFD, let us express the potential energy of the system V (r1, . . . , rN)
in terms of distances {r↵�}, where r↵� = |r↵�|. With such representation
eV ({r↵�}), we can define the corresponding CFD as

f
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↵�, (6)
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Why!Compute!the!Microscopic!Stress?!!
•  The!microscopic!stress!field!provides!a!connec4on!
between!atomic/molecular!interac4ons!and!
macroscopic!observables!
– Can!be!used!to!es4mate!elas4c!constants!such!as!
bending!moduli!

– Quan4fy!internal!balance!of!forces!due!to!defects!or!
deforma4ons!

– Powerful!visualiza4on!tool!to!understand!complex!
interac4ons!in!interfacial!systems!



An!Ambiguous!Defini4on!of!Stress!
•  The!IKN!procedure!does!not!provide!a!unique!defini4on!
of!stress!
– Balance!equa4ons!only!define!the!divergence!and!
not!the!field!itself!

– Addi4on!of!a!divergence:free!field!to!the!stress!
con4nues!to!sa4sfy!linear!momentum!balance!After invoking Liouville’s equation, one finds that for a system in mechanical

equilibrium Admal and Tadmor (2010); Tadmor and Miller (2011)
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Decomposing!Mul4:body!Poten4als!
•  Non:uniqueness!in!the!stress!defini4on!manifests!itself!
when!dealing!with!mul4:body!poten4als!

After invoking Liouville’s equation, one finds that for a system in mechanical
equilibrium Admal and Tadmor (2010); Tadmor and Miller (2011)
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2 Theory

2.1 Irving-Kirkwood framework: conservation of linear momentum and force

decompositions

In the Irving-Kirkwood framework, the continuum density field is defined as

⇢(x) =
NX

↵=1

hm↵

�(r↵ � x)i , (1)

where h·i stands for an ensemble average, m↵ and r

↵ are the mass and position of particle ↵,
�(x) is the 3D Dirac distribution centered at 0, and N is the total number of particles in the
system. Invoking the equivalence of the macroscopic momentum ⇢(x)v(x) and the microscopic
momentum
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where v

↵ is the velocity of particle ↵. These two fields satisfy the continuity equation
@⇢/@t + ⇢r · v = 0, expressing balance of mass in continuum mechanics, where r· stands
for the divergence operator. In the absence of external forces, the continuum balance of linear
momentum requires that

r · �(x) = ⇢(x)
dv(x)

dt

. (3)

After invoking Liouville’s equation, one finds that [16, 13]
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given any stress � satisfying Eq. (4), we can add any divergence-free field ! to � with the
resulting field � +! also satisfying this equation. An expression of � that satisfies Eq. (4) by
construction is [34, 35]
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Pairwise!interac4on!force!–!not!
the!net!force!on!each!par4cle!–!!
i.e.,!forces!must!be!decomposed!
!
!
!
!
Decomposed!forces!are!not!
unique!!!
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Inter:par4cle!distance!

Bond!func4on!

2 Theory
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Force!Decomposi4ons!
•  Central!force!decomposi4on!(CFD)!–!Admal!and!Tadmor!(2010,!

2011)!
–  Requires!decomposed!forces!to!be!central,!i.e.,!they!must!lie!
along!the!vector!connec4ng!the!par4cles!

– Makes!the!resul4ng!stress!tensor!symmetric!by!construc4on!

•  Goetz:Lipowsky!decompos4on!(GLD,!1999)!

–  Natural!decomposi4on,!but!may!produce!asymmetric!stress!

to contribution from the pair ↵� to the stress along the line segment joining the particles [35].
The lack of uniqueness in the definition of the stress is present in this formulation since the
force decomposition is not unique. For instance, let the potential of the system be described
additively as V =

P
M

I=1 VI

, with each contribution involving n

I

particles, then the Goetz-
Lipowsky force decomposition is [15]
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◆
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This decomposition satisfies the requirement that f

↵� = �f

�↵. However, as shown in the
experiments performed in this work, the IK-GLD is not symmetric, which therefore violates
conservation of angular momentum for simple bodies.

2.2 Conservation of angular momentum: Central Force Decomposition and

Covariant Central Force Decomposition

Conservation of angular momentum in a continuum theory of simple bodies in the absence
of external torque densities requires the stress to be symmetric, i.e. �

ij

= �

ji

. Not all force
decompositions compatible with conservation of linear momentum, i.e. f↵� = �f

�↵, lead to
conservation of angular momentum in the IK setting. It has been recently shown [16] that the
central force decomposition (CFD) is the only possible choice to obtain a symmetric stress by
construction. To define this decomposition, let us express the classical potential as a sum of
many-body contributions, V =

P
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, where V
I

involves n
I

particles and cannot be described
as a sum of lower-body interactions. Then, the CFD decomposition follows from
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where e
V

I

is a representation of the interatomic potential in terms of particle distances
r

↵� = |r↵�|. Such a representation always exists as result of the invariance with respect to
rigid body transformations of classical potentials [13].

However, CFD has an important limitation when n
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> 4. To show this, we first note
that the n
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+ 1)/2 interatomic distances (r12, . . . , r(nI�1)nI ) involved in a given multibody

potential V
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cannot be arbitrarily chosen in D
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+ . There are geometric conditions

that guarantee that these distances can be realized by a system of n
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particles, which define
the so-called shape space S
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3.3 Potential term

To calculate the functional derivative of the potential V ({r↵)}, we first parametrize it in terms
of the distances V ({r↵}) = eV ({r↵�}), which can always be done for classical interatomic
potentials [18]. Here, r↵� = |r↵�|, and r

↵� = r

� � r

↵. The set of distances are invariant
with respect to the choice of coordinate system. We divide the potential into its M additive
contributions,

eV ({r↵�}) =
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I=1

eVI({r↵�}), (16)

separating all 2-body (bonds), 3-body (angles), 4-body (torsional),. . . interactions. Because we
only admit variations of the metric consistent with a change of coordinates, as in Eq. (3), which
preserve the shape space, the chain rule for the functional derivative takes the form
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where (rSI
eVI)↵� stands for the ↵� component of the covariant derivative of the potential along

the shape space SI .
To obtain Eq. (17), we have split the potential into additive contributions VI , and

considered the shape space within the cluster of particles participating in VI . This natural
choice is the usual practice in local stress calculations from the Irving-Kirkwood procedure
[9, 21], which leads to additive force decompositions f

↵� =
P

I f
↵�
I . However, in principle

one could ignore the additive structure of the potential, seen as a single many-body potential,
leading to an alternative definition
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in which the covariant derivative is taken along the whole shape space of the system, S. In
turn, this would lead to a force decomposition mixing the e↵ect of all potentials. In particular,
the contribution from each VI would not be intrinsic of the form of VI but system-dependent
through the rest of potentials of the system. Further supporting the additive split, we note
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�VI/�g(x) under

h(x) is independent of the positions of the particles not interacting through VI , and therefore
system independent.
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of metric, g(x) + ✏h(x) induced by a change of coordinates when ✏ ! 0. Irrespective of the
coordinate system, r↵� is the length of the geodesic curve joining particles ↵ and �, which
we denote by c(�, ✏) for � 2 [0, 1], where this notation reflects the fact that the coordinate
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3.3 Potential term
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to contribution from the pair ↵� to the stress along the line segment joining the particles [35].
The lack of uniqueness in the definition of the stress is present in this formulation since the
force decomposition is not unique. For instance, let the potential of the system be described
additively as V =

P
M

I=1 VI

, with each contribution involving n

I

particles, then the Goetz-
Lipowsky force decomposition is [15]

f

↵�

GLD =
MX

I=1

1

n

I

✓
@V

I

@r

�

� @V

I

@r

↵

◆
. (6)

This decomposition satisfies the requirement that f

↵� = �f

�↵. However, as shown in the
experiments performed in this work, the IK-GLD is not symmetric, which therefore violates
conservation of angular momentum for simple bodies.

2.2 Conservation of angular momentum: Central Force Decomposition and

Covariant Central Force Decomposition

Conservation of angular momentum in a continuum theory of simple bodies in the absence
of external torque densities requires the stress to be symmetric, i.e. �

ij

= �

ji

. Not all force
decompositions compatible with conservation of linear momentum, i.e. f↵� = �f

�↵, lead to
conservation of angular momentum in the IK setting. It has been recently shown [16] that the
central force decomposition (CFD) is the only possible choice to obtain a symmetric stress by
construction. To define this decomposition, let us express the classical potential as a sum of
many-body contributions, V =

P
M

I=1 VI

, where V
I

involves n
I

particles and cannot be described
as a sum of lower-body interactions. Then, the CFD decomposition follows from

f

↵�

CFD =
MX

I=1

@

e
V

I

@r

↵�

r

↵�

r

↵�

, (7)

where e
V

I

is a representation of the interatomic potential in terms of particle distances
r

↵� = |r↵�|. Such a representation always exists as result of the invariance with respect to
rigid body transformations of classical potentials [13].

However, CFD has an important limitation when n

I

> 4. To show this, we first note
that the n

I

(n
I

+ 1)/2 interatomic distances (r12, . . . , r(nI�1)nI ) involved in a given multibody

potential V
I

cannot be arbitrarily chosen in D
I

= RnI(nI+1)/2
+ . There are geometric conditions

that guarantee that these distances can be realized by a system of n
I

particles, which define
the so-called shape space S

I

⇢ D
I

. These geometric conditions are expressed in terms of
Caley-Menger determinants. More precisely, the sets of distances need to satisfy [13, 44, 45]

�(r↵�, r↵�, r��)  0

�(r↵�, r↵�, r↵�, . . . , r��)  0

�(r↵�, r↵�, r↵�, r↵✏, . . . , r�✏) = 0

�(r↵�, r↵�, r↵�, r↵✏, r↵⇣ , . . . , r✏⇣) = 0

(8)
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After invoking Liouville’s equation, one finds that for a system in mechanical
equilibrium Admal and Tadmor (2010); Tadmor and Miller (2011)

r · �(x) =r ·
 

NX

↵=1

hm↵
v

↵ ⌦ v

↵�(r↵ � x)i
!
�

�
NX

↵=1

hF ↵�(r↵ � x)i ,

(4)

where F ↵ is the force on particle ↵ and a⌦ b denotes the dyadic product of
vectors a and b.

If Eq. (4) is used to derive an expression for �, this definition is clearly
non-unique since given any stress � satisfying Eq. (4), we can add any
divergence-free field !, i.e. r · ! = 0, to � with the resulting field � + !

also satisfying this equation. An expression of � that satisfies Eq. (4) by
construction is Irving and Kirkwood (1950); Noll (1955)

�(x) = �K(x) + �V(x),

�K(x) = �
*

NX

↵=1

m↵
v

↵ ⌦ v

↵�(r↵ � x)

+
,

�V(x) =

*
X

↵,�>↵

f

↵� ⌦ r

↵�B(r↵, r�;x)

+
,

(5)

where r

↵� = r

� � r

↵, f↵� are the terms of a force decomposition, F ↵ =PN
�=1 f

↵� satisfying f

↵� = �f

�↵, and B(r↵, r�;x) =
R 1

0 �[(1� s)r↵ + sr� �
x]ds is the bond function that spreads the contribution from the pair ↵� to
the stress along the line segment joining the particles Noll (1955). The choice
of a bond function following the straight path partially fixes the gauge invari-
ance of �. Recently, it has been shown that this is the only possible choice
to obtain a stress field satisfying balance of angular momentum, �ij = �ji

Admal and Tadmor (2010). The gauge is completely fixed by choosing a force
decomposition. Insisting on the symmetry of the stress field, this reference
proposed the central force decomposition (CFD) as the only possible choice
to obtain a symmetric stress by construction.

To define a CFD, let us express the potential energy of the system V (r1, . . . , rN)
in terms of distances {r↵�}, where r↵� = |r↵�|. With such representation
eV ({r↵�}), we can define the corresponding CFD as

f

↵�
CFD = '↵�

r̂

↵�, (6)
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FIG. 2. Balance of angular momentum of the IK stress in a
planar DPPC fluid membrane, and influence of lipid chirality.
In-plane components of the stress tensor analyzed with CFD
(A) and GLD (B). (C) Visualization of the normal and tan-
gential components of the traction vector along a cylindrical
surface perpendicular to the bilayer plane, for both CFD and
GLD. The e↵ect of the lipid chirality on the GLD stress for the
two DPPC enantiomers, L-DPPC and D-DPPC, is shown in
(D), where we consider lipid membranes composed of mono-
layers of distinct chiralities (one pure L-DPPC and the other
pure D-DPPC, left) and both monolayers with equal numbers
of L-DPPC and D-DPPC (right).

to the CFD pairwise forces

f

↵�

CFD =
MX

I=1

@

e
V

I

@r

↵�

r

↵�

r

↵�

. (5)

The CFD and GLD force decompositions result in pair-
wise forces with large di↵erences in magnitude and direc-
tion [23]. To explore the features of each force decompo-
sition, we consider a lipid bilayer system of fluid DPPC
(1,2-dipalmitoyl-sn-glycero-3-phosphocholine), which is
isotropic in the membrane plane (x � y) at the simu-
lated temperature (323 K). In addition to the conven-
tional profiles of all stress components across the thick-
ness, we adopt an unconventional but intuitive method
to visualize stress through the traction vector, t = � ·n,
on a given internal surface with unit normal n (Fig. 2).
The traction can be decomposed into a normal and a tan-
gential component, t = t

n

n+⌧ . Here, we consider a test
cylinder, and represent the normal traction t

n

as a color
map and the tangential component ⌧ using arrows.

In agreement with the symmetries of this system and
the fluidity of the bilayer, the CFD stress is diagonal with
equal lateral components (�

xx

= �

yy

) and a normal con-

stant component across the bilayer (�
zz

(z) = cst) as dic-
tated by Eq. (1A) (Fig. 2A). We note that for a bilayer
in the gel phase, the o↵-diagonal components could be
non-zero but should nevertheless respect the symmetry
of �. In sharp contrast, the GLD stress exhibits non-zero
in-plane o↵-diagonal components, which are antisymmet-
ric (�

xy

= ��

yx

) and of significant magnitude (Fig. 2B),
hence violating Eq. (1B). Furthermore, CFD and GLD
produce significantly di↵erent lateral components, and
hence normal tractions (t

n

= �

xx

= �

yy

) (Fig. 2C).
Focusing on the tangential traction, we note that ⌧

is parallel to the bilayer plane with sense and magni-
tude given by �

xy

= ��

yx

. As expected, for CFD ⌧ is
nearly zero. For GLD, however, it is clear from Fig. 2C
that the non-symmetry of the stress tensor introduces
distributed torques of opposite sign in each leaflet of the
bilayer, since �

xy

(z) = ��

xy

(�z). We hypothesize that
such behavior may be due to the internal structure of
each lipid, since the headgroup portion of DPPC con-
tains a chiral carbon. We test this hypothesis by com-
paring the stress tensors for three systems with di↵erent
mixtures of the two DPPC enantiomers (L-DPPC and
D-DPPC). Consistent with this hypothesis, the torques
induced in each monolayer according to GLD adopt the
same sign for a system with one monolayer composed of
solely L-DPPC and the second monolayer composed of
solely D-DPPC (Fig. 2D). Mixing equal numbers of each
chiral lipid in both monolayers results in nearly zero dis-
tributed torques according to the GLD stress. Thus, the
o↵-diagonal components of the GLD stress tensor reflect
the average chirality of the molecular composition. In
contrast, we find that the CFD stress tensor is essentially
unchanged by the lipid chirality [23].
To physically interpret the GLD distributed torques,

it is necessary to resort to an extended theory of contin-
uum mechanics. In micropolar continuum theories, these
torques can be balanced locally invoking a couple stress
field m, which in equilibrium satisfies ✏

i

jk

�

jk = r
l

m

il,
where ✏

ijk

is the Levi-Civita symbol [12, 39–41]. In our
situation, however, there is no compelling physical justifi-
cation for this field since the primary objects of our model
are achiral point particles [41] and there is no apparent
external source for m. Thus, although the connection
between the non-symmetry of the IK-GLD stress and
molecular chirality is very appealing, this example un-
dermines its mechanical interpretation. The HPB stress
[18, 19] produces non-symmetric stresses very similar to
GLD for this system [23].
The microscopic stress tensor not only serves as a tool

to explore the local distribution of forces, but it can
also provide important material properties. For instance,
the Gaussian curvature elastic modulus of lipid bilayers
can be computed as ̄ =

R
[(�

xx

+ �

yy

)/2� �

zz

] z2 dz,
which is highly sensitive to the features of the stress
profile, see [6] and references therein. For the three bi-
layer systems with di↵erent chiralities in Fig. 2, we obtain
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FIG. 2. Balance of angular momentum of the IK stress in a
planar DPPC fluid membrane, and influence of lipid chirality.
In-plane components of the stress tensor analyzed with CFD
(A) and GLD (B). (C) Visualization of the normal and tan-
gential components of the traction vector along a cylindrical
surface perpendicular to the bilayer plane, for both CFD and
GLD. The e↵ect of the lipid chirality on the GLD stress for the
two DPPC enantiomers, L-DPPC and D-DPPC, is shown in
(D), where we consider lipid membranes composed of mono-
layers of distinct chiralities (one pure L-DPPC and the other
pure D-DPPC, left) and both monolayers with equal numbers
of L-DPPC and D-DPPC (right).
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The CFD and GLD force decompositions result in pair-
wise forces with large di↵erences in magnitude and direc-
tion [23]. To explore the features of each force decompo-
sition, we consider a lipid bilayer system of fluid DPPC
(1,2-dipalmitoyl-sn-glycero-3-phosphocholine), which is
isotropic in the membrane plane (x � y) at the simu-
lated temperature (323 K). In addition to the conven-
tional profiles of all stress components across the thick-
ness, we adopt an unconventional but intuitive method
to visualize stress through the traction vector, t = � ·n,
on a given internal surface with unit normal n (Fig. 2).
The traction can be decomposed into a normal and a tan-
gential component, t = t

n

n+⌧ . Here, we consider a test
cylinder, and represent the normal traction t

n

as a color
map and the tangential component ⌧ using arrows.

In agreement with the symmetries of this system and
the fluidity of the bilayer, the CFD stress is diagonal with
equal lateral components (�

xx
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yy

) and a normal con-

stant component across the bilayer (�
zz

(z) = cst) as dic-
tated by Eq. (1A) (Fig. 2A). We note that for a bilayer
in the gel phase, the o↵-diagonal components could be
non-zero but should nevertheless respect the symmetry
of �. In sharp contrast, the GLD stress exhibits non-zero
in-plane o↵-diagonal components, which are antisymmet-
ric (�

xy
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) and of significant magnitude (Fig. 2B),
hence violating Eq. (1B). Furthermore, CFD and GLD
produce significantly di↵erent lateral components, and
hence normal tractions (t
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= �

yy

) (Fig. 2C).
Focusing on the tangential traction, we note that ⌧

is parallel to the bilayer plane with sense and magni-
tude given by �
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. As expected, for CFD ⌧ is
nearly zero. For GLD, however, it is clear from Fig. 2C
that the non-symmetry of the stress tensor introduces
distributed torques of opposite sign in each leaflet of the
bilayer, since �
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(z) = ��
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(�z). We hypothesize that
such behavior may be due to the internal structure of
each lipid, since the headgroup portion of DPPC con-
tains a chiral carbon. We test this hypothesis by com-
paring the stress tensors for three systems with di↵erent
mixtures of the two DPPC enantiomers (L-DPPC and
D-DPPC). Consistent with this hypothesis, the torques
induced in each monolayer according to GLD adopt the
same sign for a system with one monolayer composed of
solely L-DPPC and the second monolayer composed of
solely D-DPPC (Fig. 2D). Mixing equal numbers of each
chiral lipid in both monolayers results in nearly zero dis-
tributed torques according to the GLD stress. Thus, the
o↵-diagonal components of the GLD stress tensor reflect
the average chirality of the molecular composition. In
contrast, we find that the CFD stress tensor is essentially
unchanged by the lipid chirality [23].
To physically interpret the GLD distributed torques,

it is necessary to resort to an extended theory of contin-
uum mechanics. In micropolar continuum theories, these
torques can be balanced locally invoking a couple stress
field m, which in equilibrium satisfies ✏
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il,
where ✏
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is the Levi-Civita symbol [12, 39–41]. In our
situation, however, there is no compelling physical justifi-
cation for this field since the primary objects of our model
are achiral point particles [41] and there is no apparent
external source for m. Thus, although the connection
between the non-symmetry of the IK-GLD stress and
molecular chirality is very appealing, this example un-
dermines its mechanical interpretation. The HPB stress
[18, 19] produces non-symmetric stresses very similar to
GLD for this system [23].
The microscopic stress tensor not only serves as a tool

to explore the local distribution of forces, but it can
also provide important material properties. For instance,
the Gaussian curvature elastic modulus of lipid bilayers
can be computed as ̄ =

R
[(�

xx

+ �

yy

)/2� �

zz

] z2 dz,
which is highly sensitive to the features of the stress
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gential components of the traction vector along a cylindrical
surface perpendicular to the bilayer plane, for both CFD and
GLD. The e↵ect of the lipid chirality on the GLD stress for the
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(D), where we consider lipid membranes composed of mono-
layers of distinct chiralities (one pure L-DPPC and the other
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The CFD and GLD force decompositions result in pair-
wise forces with large di↵erences in magnitude and direc-
tion [23]. To explore the features of each force decompo-
sition, we consider a lipid bilayer system of fluid DPPC
(1,2-dipalmitoyl-sn-glycero-3-phosphocholine), which is
isotropic in the membrane plane (x � y) at the simu-
lated temperature (323 K). In addition to the conven-
tional profiles of all stress components across the thick-
ness, we adopt an unconventional but intuitive method
to visualize stress through the traction vector, t = � ·n,
on a given internal surface with unit normal n (Fig. 2).
The traction can be decomposed into a normal and a tan-
gential component, t = t
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n+⌧ . Here, we consider a test
cylinder, and represent the normal traction t
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as a color
map and the tangential component ⌧ using arrows.

In agreement with the symmetries of this system and
the fluidity of the bilayer, the CFD stress is diagonal with
equal lateral components (�

xx

= �

yy

) and a normal con-

stant component across the bilayer (�
zz

(z) = cst) as dic-
tated by Eq. (1A) (Fig. 2A). We note that for a bilayer
in the gel phase, the o↵-diagonal components could be
non-zero but should nevertheless respect the symmetry
of �. In sharp contrast, the GLD stress exhibits non-zero
in-plane o↵-diagonal components, which are antisymmet-
ric (�
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) and of significant magnitude (Fig. 2B),
hence violating Eq. (1B). Furthermore, CFD and GLD
produce significantly di↵erent lateral components, and
hence normal tractions (t
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) (Fig. 2C).
Focusing on the tangential traction, we note that ⌧

is parallel to the bilayer plane with sense and magni-
tude given by �
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. As expected, for CFD ⌧ is
nearly zero. For GLD, however, it is clear from Fig. 2C
that the non-symmetry of the stress tensor introduces
distributed torques of opposite sign in each leaflet of the
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(�z). We hypothesize that
such behavior may be due to the internal structure of
each lipid, since the headgroup portion of DPPC con-
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induced in each monolayer according to GLD adopt the
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dermines its mechanical interpretation. The HPB stress
[18, 19] produces non-symmetric stresses very similar to
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FIG. 2. Balance of angular momentum of the IK stress in a
planar DPPC fluid membrane, and influence of lipid chirality.
In-plane components of the stress tensor analyzed with CFD
(A) and GLD (B). (C) Visualization of the normal and tan-
gential components of the traction vector along a cylindrical
surface perpendicular to the bilayer plane, for both CFD and
GLD. The e↵ect of the lipid chirality on the GLD stress for the
two DPPC enantiomers, L-DPPC and D-DPPC, is shown in
(D), where we consider lipid membranes composed of mono-
layers of distinct chiralities (one pure L-DPPC and the other
pure D-DPPC, left) and both monolayers with equal numbers
of L-DPPC and D-DPPC (right).
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isotropic in the membrane plane (x � y) at the simu-
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tional profiles of all stress components across the thick-
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to visualize stress through the traction vector, t = � ·n,
on a given internal surface with unit normal n (Fig. 2).
The traction can be decomposed into a normal and a tan-
gential component, t = t

n

n+⌧ . Here, we consider a test
cylinder, and represent the normal traction t

n

as a color
map and the tangential component ⌧ using arrows.

In agreement with the symmetries of this system and
the fluidity of the bilayer, the CFD stress is diagonal with
equal lateral components (�
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) and a normal con-

stant component across the bilayer (�
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(z) = cst) as dic-
tated by Eq. (1A) (Fig. 2A). We note that for a bilayer
in the gel phase, the o↵-diagonal components could be
non-zero but should nevertheless respect the symmetry
of �. In sharp contrast, the GLD stress exhibits non-zero
in-plane o↵-diagonal components, which are antisymmet-
ric (�
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yx

) and of significant magnitude (Fig. 2B),
hence violating Eq. (1B). Furthermore, CFD and GLD
produce significantly di↵erent lateral components, and
hence normal tractions (t
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) (Fig. 2C).
Focusing on the tangential traction, we note that ⌧

is parallel to the bilayer plane with sense and magni-
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. As expected, for CFD ⌧ is
nearly zero. For GLD, however, it is clear from Fig. 2C
that the non-symmetry of the stress tensor introduces
distributed torques of opposite sign in each leaflet of the
bilayer, since �
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(�z). We hypothesize that
such behavior may be due to the internal structure of
each lipid, since the headgroup portion of DPPC con-
tains a chiral carbon. We test this hypothesis by com-
paring the stress tensors for three systems with di↵erent
mixtures of the two DPPC enantiomers (L-DPPC and
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induced in each monolayer according to GLD adopt the
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solely D-DPPC (Fig. 2D). Mixing equal numbers of each
chiral lipid in both monolayers results in nearly zero dis-
tributed torques according to the GLD stress. Thus, the
o↵-diagonal components of the GLD stress tensor reflect
the average chirality of the molecular composition. In
contrast, we find that the CFD stress tensor is essentially
unchanged by the lipid chirality [23].
To physically interpret the GLD distributed torques,

it is necessary to resort to an extended theory of contin-
uum mechanics. In micropolar continuum theories, these
torques can be balanced locally invoking a couple stress
field m, which in equilibrium satisfies ✏
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where ✏

ijk

is the Levi-Civita symbol [12, 39–41]. In our
situation, however, there is no compelling physical justifi-
cation for this field since the primary objects of our model
are achiral point particles [41] and there is no apparent
external source for m. Thus, although the connection
between the non-symmetry of the IK-GLD stress and
molecular chirality is very appealing, this example un-
dermines its mechanical interpretation. The HPB stress
[18, 19] produces non-symmetric stresses very similar to
GLD for this system [23].
The microscopic stress tensor not only serves as a tool

to explore the local distribution of forces, but it can
also provide important material properties. For instance,
the Gaussian curvature elastic modulus of lipid bilayers
can be computed as ̄ =

R
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)/2� �

zz

] z2 dz,
which is highly sensitive to the features of the stress
profile, see [6] and references therein. For the three bi-
layer systems with di↵erent chiralities in Fig. 2, we obtain
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̄CFD = (�6.4,�6.7,�6.1) · 10�20 J, in agreement with
the common estimates of ̄ in the order of the negative of
the bending modulus ⇠ 5� 15 · 10�20 J [42]. Strikingly,
we find ̄GLD = (0.91, 0.57, 1.3) ·10�20 J, with the wrong
sign–suggesting that a DPPC bilayer would be unstable
[43]– and widely varying magnitudes.

Taken together, these results show that the choice of
microscopic stress definition is not a mere theoretical
preoccupation. Our results strongly favor the IK-CFD
definition, which, unlike the atomic virial or the IK-
GLD stresses, identically satisfies Eq. (1) for a system
in equilibrium. However, CFD is not uniquely defined
when n

I

> 4. The geometric reason behind this am-
biguity is that the n

I

(n
I

+ 1)/2 interatomic distances
(r12, . . . , r(nI�1),nI ) involved in a given multibody poten-

tial V
I

cannot be arbitrarily chosen in D
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= RnI(nI+1)/2
+ .

There are geometric conditions that make these distances
realizable by a system of n

I

particles, which define the
so-called shape space S

I

⇢ D
I

. When n

I

> 4, the di-
mension of the manifold S

I

is smaller than n

I

(n
I

+ 1)/2,
and therefore the di↵erential calculus involved in Eq. (5)
needs to be carefully considered [44, 45]. More practi-
cally, when n

I

> 4 there are infinitely many di↵erent
ways to express the potential, eV

I

, in terms of interatomic
distances, each resulting in a di↵erent force decomposi-
tion and microscopic stress [13, 16].

In the spirit of [46–48], we propose an alternative
thermodynamic derivation of the IK microscopic stress,
which naturally and unambiguously extends CFD to
multibody potentials. In analogy to the Doyle-Ericksen
equation of continuum mechanics [49, 50], the stress ten-
sor can be defined from covariance arguments as

�(x) =
2p
g(x)

�A

�g(x)
, (6)

where g(x) is the Jacobian determinant of the metric,
and �A is the variation of the canonical free energy with
respect to an infinitesimal change of metric �g(x) result-
ing from a change of coordinates. As fully detailed in [22],
this variational formalism identifies the covariant central
force decomposition (cCFD)
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where rSI
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V
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is the covariant derivative of the potential
along the shape space S

I

. For four- or fewer-body po-
tentials, cCFD and CFD in Eq. (5) coincide. However,
cCFD circumvents the main limitation of CFD by provid-
ing a unique expression for potentials with any number
of particles. In practice, (rS e

V

I
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can be computed by

projecting @
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↵� for an arbitrary extension onto S
I

[23]. Through a di↵erent rationale, the projection of the
CFD onto the shape space has been recently discussed
in [51]. Our assumption that the potential is additively

FIG. 3. The IK stress for force-fields beyond four-body inter-
actions. (A) Ribbon representation of a structural coiled-
coil protein simulated with the 5-body CMAP potential
(CHARMM22). Tractions at the surface of the protein calcu-
lated with di↵erent variants of the IK stress: GLD (B), cCFD
(C), and nCFD (D, see text).

decomposed into a many-body expansion is appropriate
for most classical force-fields. For semi-empirical meth-
ods based on density functional theory concepts, such as
the embedded-atom model [20], this additive structure is
not apparent. We refer the interested reader to [22, 51]
for further discussion.

We test the cCFD microscopic stress by considering
a coiled-coil structural protein, composed of two iden-
tical ↵-helical chains that wrap around each other to
form a super-helix. The coiled-coil structure is a double
“zipper”, with an inner core of intercalating hydropho-
bic amino acids that are flanked by opposing negatively
and positively charged amino acids, Fig 3A. We model
this system as an infinitely long periodic molecule with
a widely used protein force-field (CHARMM22/CMAP)
[21, 52] involving up to five-body interactions. We com-
pare the tractions on the surface of the coiled-coil protein,
essentially exerted by the solvent, calculated with GLD,
cCFD, and another seemingly reasonable way to fix the
indeterminacy of CFD (by minimizing the norm of the
force decomposition) that we call nCFD [23]. We find
that for GLD and cCFD, t

n

exhibits a similar pattern
that follows the left-handed helical structure, Fig 3B,C.
The zippered interface between the two chains is domi-
nated by outward tractions (red), which transition to in-
ward tractions (blue) at the periphery of the protein. In
contrast, nCFD produces spurious maps of t

n

(Fig 3D),
highlighting the need for a physically meaningful method
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Examining the mechanical equilibrium of microscopic stresses in molecular simulations
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The microscopic stress field provides a unique connection between atomistic simulations and me-
chanics at the nanoscale. However, its definition remains ambiguous. Rather than a mere theoretical
preoccupation, we show that this fact acutely manifests itself in local stress calculations of defective
graphene, lipid bilayers, and fibrous proteins. We find that popular definitions of the microscopic
stress violate the continuum statements of mechanical equilibrium, and propose an unambiguous
and physically sound definition.

PACS numbers: 87.10.Tf, 87.15.A-, 87.15.La, 87.16.D-, 62.25.-g

The stress �(x) is a second-rank tensor field encod-
ing the internal force distribution in a continuum system;
when multiplied by a unit vector n, it provides the forces
per unit area in the material across a surface passing
through x and perpendicular to n. The continuum stress
field can be connected to the statistical mechanics of dis-
crete particle systems, in what is called the microscopic
stress. Today, the microscopic stress is increasingly used
to recapitulate mechanical information contained in long
molecular dynamics (MD) trajectories of non-uniform
systems, or to connect molecular details with continuum
physics at larger scales. Significant applications include
defective bulk [1, 2] and two-dimensional crystals [3, 4],
biomolecular assemblies such as lipid bilayers [5–7], mem-
brane proteins [8, 9], and even isolated molecules [10].

The average (or virial) stress of a periodic system can
be uniquely defined and given a precise thermodynami-
cal interpretation [11]. There are, however, multiple pro-
cedures to map a statistical mechanics ensemble into a
stress field. This indeterminacy is expected since any
divergence-free symmetric tensor field (self-equilibrated)
can be added to the local stress without a↵ecting the
continuum statements of balance of linear and angular
momentum for a system in equilibrium [12, 13]

[A] �
ij,j

= 0 and [B] �
ij

= �

ji

, (1)

where we have ignored externally applied force and
torque densities. The ambiguity in the microscopic stress
is widely appreciated theoretically, but its practical con-
sequences have been largely overlooked, partly because
di↵erent definitions coincide for simple force-fields [7]. As
molecular simulations model increasingly complex sys-
tems, whether di↵erent definitions of the microscopic
stress satisfy the fundamental requirements of mechan-
ical equilibrium in Eq. (1) has not been systematically
examined.

Here, we simulate the equilibrium behavior of three
important condensed matter systems–defective graphene,
lipid bilayers, and coiled-coil fibrous proteins–using MD
simulations with realistic atomistic force-fields, and study
the significance of the definition of the microscopic stress.

We consider the atomic virial stress [3, 4, 14], and sev-
eral flavors of the Irving-Kirkwood stress [7, 8, 15–19].
Strikingly, we find that the atomic virial stress does not
satisfy balance of linear momentum. Furthermore, we
find that a widely used version of the Irving-Kirkwood
stress [15] does not satisfy balance of angular momen-
tum for systems with chiral constituents. Our results fa-
vor a recent canonical definition of the Irving-Kirkwood
stress [16, 17], which is however limited to multibody po-
tentials with at most 4-body interactions. Motivated by
higher-body force-fields used in materials science and bio-
chemistry [20, 21], we develop and test a new and general
procedure [22] to uniquely obtain a physically meaningful
microscopic stress.
Microscopic stress fields include a kinetic contribution

�K, describing the flux of momentum due to internal vi-
brations, and a potential contribution �V accounting for
the inter-atomic forces. Since the di�culty in the micro-
scopic stress definition stems from the potential part, we
focus only on this contribution and refer to [23] for the
expression of �K. For solid systems, where atoms stay
relatively immobile, it is common to resort to the atomic
virial stress definition [14], conceptually and computa-
tionally simpler than other definitions. In this method,
the potential component is computed by distributing the
virial of each potential contribution equally amongst the
particles involved. More specifically, let the potential of
the system be described additively as V =

P
M

I=1 VI

, with
each contribution involving n

I

particles. Then, we have
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where r

� is the position of particle �, I↵ collects the set
of potential contributions involving particle ↵, and ⌦

↵

is
the volume of this particle.
An alternative definition of the microscopic stress with

a more solid statistical mechanics foundation was pio-
neered by Irving and Kirkwood [34, 35] for two-body po-
tentials. This approach, which we label as IK, defines the
stress at each point in space, �(x), rather than at the
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torque densities. The ambiguity in the microscopic stress
is widely appreciated theoretically, but its practical con-
sequences have been largely overlooked, partly because
di↵erent definitions coincide for simple force-fields [7]. As
molecular simulations model increasingly complex sys-
tems, whether di↵erent definitions of the microscopic
stress satisfy the fundamental requirements of mechan-
ical equilibrium in Eq. (1) has not been systematically
examined.

Here, we simulate the equilibrium behavior of three
important condensed matter systems–defective graphene,
lipid bilayers, and coiled-coil fibrous proteins–using MD
simulations with realistic atomistic force-fields, and study
the significance of the definition of the microscopic stress.

We consider the atomic virial stress [3, 4, 14], and sev-
eral flavors of the Irving-Kirkwood stress [7, 8, 15–19].
Strikingly, we find that the atomic virial stress does not
satisfy balance of linear momentum. Furthermore, we
find that a widely used version of the Irving-Kirkwood
stress [15] does not satisfy balance of angular momen-
tum for systems with chiral constituents. Our results fa-
vor a recent canonical definition of the Irving-Kirkwood
stress [16, 17], which is however limited to multibody po-
tentials with at most 4-body interactions. Motivated by
higher-body force-fields used in materials science and bio-
chemistry [20, 21], we develop and test a new and general
procedure [22] to uniquely obtain a physically meaningful
microscopic stress.
Microscopic stress fields include a kinetic contribution

�K, describing the flux of momentum due to internal vi-
brations, and a potential contribution �V accounting for
the inter-atomic forces. Since the di�culty in the micro-
scopic stress definition stems from the potential part, we
focus only on this contribution and refer to [23] for the
expression of �K. For solid systems, where atoms stay
relatively immobile, it is common to resort to the atomic
virial stress definition [14], conceptually and computa-
tionally simpler than other definitions. In this method,
the potential component is computed by distributing the
virial of each potential contribution equally amongst the
particles involved. More specifically, let the potential of
the system be described additively as V =

P
M

I=1 VI

, with
each contribution involving n

I

particles. Then, we have

�

↵

V =
1

⌦
↵

X

I2I↵

1

n

I

*
X

�

@V

I

@r

�

⌦ r

�

+
, (2)

where r

� is the position of particle �, I↵ collects the set
of potential contributions involving particle ↵, and ⌦

↵

is
the volume of this particle.
An alternative definition of the microscopic stress with

a more solid statistical mechanics foundation was pio-
neered by Irving and Kirkwood [34, 35] for two-body po-
tentials. This approach, which we label as IK, defines the
stress at each point in space, �(x), rather than at the



Graphene!with!Stone:Wales!Defect!
•  How!do!the!spa4al!IKN!stresses!compare!to!the!stress/atom?!
•  Periodic!graphene!sheet!with!defect!–!morse!bond!poten4al!+!

vdw,!angle!and!dihedral!terms!(no!charges)!



Stress/atom!vs!IKN!Spa4al!Stress!



Stress/atom!vs!IKN!Spa4al!Stress!
•  Virial!stress/atom!shows!non:zero!divergence!near!
defect!–!violates!conserva4on!of!linear!momentum!

•  All!stresses!are!qualita4vely!similar!when!spa4ally!
averaged!using!gaussian!kernel!
– Virial!stress/atom!is!computa4onally!much!faster!–!
may!be!used!with!cau4on!as!a!quick!visualiza4on!
tool!

•  Magnitude!of!the!raw!stresses!is!significantly!different!



CFD!and!n:body!Poten4als!
•  IKN!+!CFD!provides!a!consistent!and!physically!
meaningful!stress!but!has!an!important!limita4on!
– CFD!is!uniquely!defined!only!for!poten4als!with!up!
to!4!interac4ng!par4cles!(e.g.,!dihedrals)!

– For!5:body!and!higher!order!poten4als!the!system!is!
underdetermined!and!many!possible!CFDs!exist!

–  !!!!!!!requires!an!arbitrary!extension!of!poten4al!
beyond!defined!configura4onal!space!

to contribution from the pair ↵� to the stress along the line segment joining the particles [35].
The lack of uniqueness in the definition of the stress is present in this formulation since the
force decomposition is not unique. For instance, let the potential of the system be described
additively as V =

P
M

I=1 VI

, with each contribution involving n

I

particles, then the Goetz-
Lipowsky force decomposition is [15]

f

↵�

GLD =
MX

I=1

1

n

I

✓
@V

I

@r

�

� @V

I

@r

↵

◆
. (6)

This decomposition satisfies the requirement that f

↵� = �f

�↵. However, as shown in the
experiments performed in this work, the IK-GLD is not symmetric, which therefore violates
conservation of angular momentum for simple bodies.

2.2 Conservation of angular momentum: Central Force Decomposition and

Covariant Central Force Decomposition

Conservation of angular momentum in a continuum theory of simple bodies in the absence
of external torque densities requires the stress to be symmetric, i.e. �

ij

= �

ji

. Not all force
decompositions compatible with conservation of linear momentum, i.e. f↵� = �f

�↵, lead to
conservation of angular momentum in the IK setting. It has been recently shown [16] that the
central force decomposition (CFD) is the only possible choice to obtain a symmetric stress by
construction. To define this decomposition, let us express the classical potential as a sum of
many-body contributions, V =

P
M

I=1 VI

, where V
I

involves n
I

particles and cannot be described
as a sum of lower-body interactions. Then, the CFD decomposition follows from

f

↵�

CFD =
MX

I=1

@

e
V

I

@r

↵�

r

↵�

r

↵�

, (7)

where e
V

I

is a representation of the interatomic potential in terms of particle distances
r

↵� = |r↵�|. Such a representation always exists as result of the invariance with respect to
rigid body transformations of classical potentials [13].

However, CFD has an important limitation when n

I

> 4. To show this, we first note
that the n

I

(n
I

+ 1)/2 interatomic distances (r12, . . . , r(nI�1)nI ) involved in a given multibody

potential V
I

cannot be arbitrarily chosen in D
I

= RnI(nI+1)/2
+ . There are geometric conditions

that guarantee that these distances can be realized by a system of n
I

particles, which define
the so-called shape space S

I

⇢ D
I

. These geometric conditions are expressed in terms of
Caley-Menger determinants. More precisely, the sets of distances need to satisfy [13, 44, 45]

�(r↵�, r↵�, r��)  0

�(r↵�, r↵�, r↵�, . . . , r��)  0

�(r↵�, r↵�, r↵�, r↵✏, . . . , r�✏) = 0

�(r↵�, r↵�, r↵�, r↵✏, r↵⇣ , . . . , r✏⇣) = 0

(8)

8



A!Geometric!Defini4on!of!Stress!
•  Stress!can!be!defined!from!covariance!arguments!similar!to!

Doyle:Ericksen!equa4on!of!con4nuum!mechanics!

!
•  Resul4ng!poten4al!term!is!analogous!to!the!IKN!expression!

4

̄CFD = (�6.4,�6.7,�6.1) · 10�20 J, in agreement with
the common estimates of ̄ in the order of the negative of
the bending modulus ⇠ 5� 15 · 10�20 J [42]. Strikingly,
we find ̄GLD = (0.91, 0.57, 1.3) ·10�20 J, with the wrong
sign–suggesting that a DPPC bilayer would be unstable
[43]– and widely varying magnitudes.

Taken together, these results show that the choice of
microscopic stress definition is not a mere theoretical
preoccupation. Our results strongly favor the IK-CFD
definition, which, unlike the atomic virial or the IK-
GLD stresses, identically satisfies Eq. (1) for a system
in equilibrium. However, CFD is not uniquely defined
when n

I

> 4. The geometric reason behind this am-
biguity is that the n

I

(n
I

+ 1)/2 interatomic distances
(r12, . . . , r(nI�1),nI ) involved in a given multibody poten-

tial V
I

cannot be arbitrarily chosen in D
I

= RnI(nI+1)/2
+ .

There are geometric conditions that make these distances
realizable by a system of n

I

particles, which define the
so-called shape space S

I

⇢ D
I

. When n

I

> 4, the di-
mension of the manifold S

I

is smaller than n

I

(n
I

+ 1)/2,
and therefore the di↵erential calculus involved in Eq. (5)
needs to be carefully considered [44, 45]. More practi-
cally, when n

I

> 4 there are infinitely many di↵erent
ways to express the potential, eV

I

, in terms of interatomic
distances, each resulting in a di↵erent force decomposi-
tion and microscopic stress [13, 16].

In the spirit of [46–48], we propose an alternative
thermodynamic derivation of the IK microscopic stress,
which naturally and unambiguously extends CFD to
multibody potentials. In analogy to the Doyle-Ericksen
equation of continuum mechanics [49, 50], the stress ten-
sor can be defined from covariance arguments as

�(x) =
2p
g(x)

�A

�g(x)
, (6)

where g(x) is the Jacobian determinant of the metric,
and �A is the variation of the canonical free energy with
respect to an infinitesimal change of metric �g(x) result-
ing from a change of coordinates. As fully detailed in [22],
this variational formalism identifies the covariant central
force decomposition (cCFD)

f

↵�

cCFD =
MX

I=1

⇣
rSI

e
V

I

⌘

↵�

r

↵�

r

↵�

, (7)

where rSI
e
V

I

is the covariant derivative of the potential
along the shape space S

I

. For four- or fewer-body po-
tentials, cCFD and CFD in Eq. (5) coincide. However,
cCFD circumvents the main limitation of CFD by provid-
ing a unique expression for potentials with any number
of particles. In practice, (rS e

V

I

)
↵�

can be computed by

projecting @

e
V

I

/@r

↵� for an arbitrary extension onto S
I

[23]. Through a di↵erent rationale, the projection of the
CFD onto the shape space has been recently discussed
in [51]. Our assumption that the potential is additively

FIG. 3. The IK stress for force-fields beyond four-body inter-
actions. (A) Ribbon representation of a structural coiled-
coil protein simulated with the 5-body CMAP potential
(CHARMM22). Tractions at the surface of the protein calcu-
lated with di↵erent variants of the IK stress: GLD (B), cCFD
(C), and nCFD (D, see text).

decomposed into a many-body expansion is appropriate
for most classical force-fields. For semi-empirical meth-
ods based on density functional theory concepts, such as
the embedded-atom model [20], this additive structure is
not apparent. We refer the interested reader to [22, 51]
for further discussion.

We test the cCFD microscopic stress by considering
a coiled-coil structural protein, composed of two iden-
tical ↵-helical chains that wrap around each other to
form a super-helix. The coiled-coil structure is a double
“zipper”, with an inner core of intercalating hydropho-
bic amino acids that are flanked by opposing negatively
and positively charged amino acids, Fig 3A. We model
this system as an infinitely long periodic molecule with
a widely used protein force-field (CHARMM22/CMAP)
[21, 52] involving up to five-body interactions. We com-
pare the tractions on the surface of the coiled-coil protein,
essentially exerted by the solvent, calculated with GLD,
cCFD, and another seemingly reasonable way to fix the
indeterminacy of CFD (by minimizing the norm of the
force decomposition) that we call nCFD [23]. We find
that for GLD and cCFD, t

n

exhibits a similar pattern
that follows the left-handed helical structure, Fig 3B,C.
The zippered interface between the two chains is domi-
nated by outward tractions (red), which transition to in-
ward tractions (blue) at the periphery of the protein. In
contrast, nCFD produces spurious maps of t

n

(Fig 3D),
highlighting the need for a physically meaningful method

Varia4on!of!the!canonical!
free!energy!

Infinitesimal!change!of!metric!
due!to!a!change!of!coordinates!
(i.e.,!a!deforma4on)!

Evaluated at ✏ = 0, gij = �ij. Furthermore, parametrizing the straight line
c0(�) = (1� �)r↵ + �r�, we obtain

�r↵�

�g
(x) =
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Finally, we obtain
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which is exactly the Irving-Kirkwood result with a force decomposition

f

↵� =
NX

n=2

MnX

In=1

X

↵,�>↵

'↵�
SIn

r̂

↵�. (42)

This covariant central force decomposition (cCFD) is a close analog of the
usual CFD in Eq. (6), which replaces the partial di↵erentiation of eVIn by a
covariant di↵erentiation along the shape spaces SIn . Since SIn is an open
subset of DIn for n  4, cCFD and CFD coincide in this case.

4. Evaluating the covariant derivative along the shape space

Practically, the evaluation of (rSIn
eVIn)↵� can be performed by first com-

puting the gradient of an extension of the potential in the distance space
DIn , rDIn

eVIn , and then projecting the result onto the tangent of the shape
space SIn .

The calculation of rDIn
eVIn for an arbitrary extension can be performed

by solving the following linear system of equations, which reflect the fact that
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̄CFD = (�6.4,�6.7,�6.1) · 10�20 J, in agreement with
the common estimates of ̄ in the order of the negative of
the bending modulus ⇠ 5� 15 · 10�20 J [42]. Strikingly,
we find ̄GLD = (0.91, 0.57, 1.3) ·10�20 J, with the wrong
sign–suggesting that a DPPC bilayer would be unstable
[43]– and widely varying magnitudes.

Taken together, these results show that the choice of
microscopic stress definition is not a mere theoretical
preoccupation. Our results strongly favor the IK-CFD
definition, which, unlike the atomic virial or the IK-
GLD stresses, identically satisfies Eq. (1) for a system
in equilibrium. However, CFD is not uniquely defined
when n

I

> 4. The geometric reason behind this am-
biguity is that the n

I

(n
I

+ 1)/2 interatomic distances
(r12, . . . , r(nI�1),nI ) involved in a given multibody poten-

tial V
I

cannot be arbitrarily chosen in D
I

= RnI(nI+1)/2
+ .

There are geometric conditions that make these distances
realizable by a system of n

I

particles, which define the
so-called shape space S

I

⇢ D
I

. When n

I

> 4, the di-
mension of the manifold S

I

is smaller than n

I

(n
I

+ 1)/2,
and therefore the di↵erential calculus involved in Eq. (5)
needs to be carefully considered [44, 45]. More practi-
cally, when n

I

> 4 there are infinitely many di↵erent
ways to express the potential, eV

I

, in terms of interatomic
distances, each resulting in a di↵erent force decomposi-
tion and microscopic stress [13, 16].

In the spirit of [46–48], we propose an alternative
thermodynamic derivation of the IK microscopic stress,
which naturally and unambiguously extends CFD to
multibody potentials. In analogy to the Doyle-Ericksen
equation of continuum mechanics [49, 50], the stress ten-
sor can be defined from covariance arguments as

�(x) =
2p
g(x)

�A

�g(x)
, (6)

where g(x) is the Jacobian determinant of the metric,
and �A is the variation of the canonical free energy with
respect to an infinitesimal change of metric �g(x) result-
ing from a change of coordinates. As fully detailed in [22],
this variational formalism identifies the covariant central
force decomposition (cCFD)
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where rSI
e
V

I

is the covariant derivative of the potential
along the shape space S

I

. For four- or fewer-body po-
tentials, cCFD and CFD in Eq. (5) coincide. However,
cCFD circumvents the main limitation of CFD by provid-
ing a unique expression for potentials with any number
of particles. In practice, (rS e

V

I

)
↵�

can be computed by

projecting @

e
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↵� for an arbitrary extension onto S
I

[23]. Through a di↵erent rationale, the projection of the
CFD onto the shape space has been recently discussed
in [51]. Our assumption that the potential is additively

FIG. 3. The IK stress for force-fields beyond four-body inter-
actions. (A) Ribbon representation of a structural coiled-
coil protein simulated with the 5-body CMAP potential
(CHARMM22). Tractions at the surface of the protein calcu-
lated with di↵erent variants of the IK stress: GLD (B), cCFD
(C), and nCFD (D, see text).

decomposed into a many-body expansion is appropriate
for most classical force-fields. For semi-empirical meth-
ods based on density functional theory concepts, such as
the embedded-atom model [20], this additive structure is
not apparent. We refer the interested reader to [22, 51]
for further discussion.

We test the cCFD microscopic stress by considering
a coiled-coil structural protein, composed of two iden-
tical ↵-helical chains that wrap around each other to
form a super-helix. The coiled-coil structure is a double
“zipper”, with an inner core of intercalating hydropho-
bic amino acids that are flanked by opposing negatively
and positively charged amino acids, Fig 3A. We model
this system as an infinitely long periodic molecule with
a widely used protein force-field (CHARMM22/CMAP)
[21, 52] involving up to five-body interactions. We com-
pare the tractions on the surface of the coiled-coil protein,
essentially exerted by the solvent, calculated with GLD,
cCFD, and another seemingly reasonable way to fix the
indeterminacy of CFD (by minimizing the norm of the
force decomposition) that we call nCFD [23]. We find
that for GLD and cCFD, t

n

exhibits a similar pattern
that follows the left-handed helical structure, Fig 3B,C.
The zippered interface between the two chains is domi-
nated by outward tractions (red), which transition to in-
ward tractions (blue) at the periphery of the protein. In
contrast, nCFD produces spurious maps of t

n

(Fig 3D),
highlighting the need for a physically meaningful method

Covariant!central!force!
decomposi4on!(cCFD)!



cCFD!and!5:body!Poten4als!
•  For!up!to!4:body!
poten4als!CFD!and!
cCFD!coincide!

•  cCFD!is!unique!for!any!
n:body!poten4al!

•  Example:!fibrous!
coiled:coil!protein!
(infinitely!periodic)!
simulated!with!5:body!
poten4al!term!
(CHARMM22/CMAP)!



Summary!
•  We!show!that!non:uniqueness!in!defini4on!of!the!
microscopic!stress!has!profound!effects!in!resul4ng!
con4nuum!fields!

•  Comparison!of!various!force!decomposi4ons!of!
mul4body!poten4als!show!that!CFD!and!cCFD!produce!
physically!meaningful!stresses!

•  We!present!a!covariant!central!force!decomposi4on!
that!can!be!used!to!uniquely!decompose!any!n:body!
poten4al!



Numerical!Implementa4on!
•  All!stress!calcula4ons!were!done!with!custom!version!of!

GROMACS!v4.5.5!
•  We!have!also!implemented!an!independent!C++!library!called!

libMDStress!that!can!be!incorporated!into!any!molecular!
simula4on!code!to!compute!local!stresses!including!the!various!
IKN!flavors!+!virial!stress/atom!

•  Code!available!from!mdstress.org!
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