

Exceptional service in the national interest

SNAP: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials for LAMMPS

Aidan Thompson

Computing Research Center

Sandia National Laboratories, New Mexico

August 2015 LAMMPS Users' Workshop and Symposium

SAND 2014-1297C

Why Use Molecular Dynamics Simulation

- Continuum models require underlying models of the materials behavior
- Quantum methods can provide very complete description for 100s of atoms
- Molecular Dynamics acts as the "missing link"
 - Bridges between quantum and continuum models
 - Moreover, extends quantum accuracy to continuum length scales; retaining atomistic information

atoms,

VASP DFT N≈100

Screw Dislocation Dipole in Tantalum

Weinberger, Tucker, and Foiles, PRB (2013)

positions,

velocities

Example: Plasticity in BCC Metals

SNAP: Spectral Neighbor Analysis Potentials

- **GAP (Gaussian Approximation Potential):** Bartok, Csanyi et al., *Phys. Rev. Lett, 2010.* Uses 3D neighbor density bispectrum and **Gaussian process regression**.
- **SNAP (Spectral Neighbor Analysis Potential):** Our SNAP approach uses GAP's neighbor bispectrum, but replaces Gaussian process with **linear regression**.
 - More robust
 - Lower computational cost
 - Decouples MD speed from training set size
 - Enables large training data sets, more bispectrum coefficients
 - Straightforward sensitivity analysis

Bispectrum Components as Descriptor

• Neighbors of each atom are mapped onto unit sphere in 4D

$$\left(\theta_0, \theta, \phi\right) = \left(\theta_0^{max} r/r_{cut}, \cos^{-1}(z/r), \tan^{-1}(y/x)\right)$$

- Expand density around each atom in a basis of 4D hyperspherical harmonics,
- Bispectrum components of the 4D hyperspherical harmonic expansion are used as the geometric descriptors of the local environment
 - Preserves universal physical symmetries
 - Rotation, translation, permutation
 - Size-consistent

$$u_{m,m'}^{j} = U_{m,m'}^{j}(0,0,0) + \sum_{r_{ii'} < R_{cut}} f_c(r_{ii'}) w_i U_{m,m'}^{j}(\theta_0,\theta,\phi)$$

$$B_{j_1,j_2,j} = \sum_{m_1,m_1'=-j_1}^{j_1} \sum_{m_2,m_2'=-j_2}^{j_2} \sum_{m,m'=-j}^{j} (u_{m,m'}^j)^* H_{j_2m_2m_2'}^{j_{mm'}} u_{m_1,m_1'}^{j_1} u_{m_2,m_2'}^{j_2}$$

Symmetry relation:
$$\frac{B_{j_1,j_2,j_1}}{2j+1} = \frac{B_{j,j_2,j_1}}{2j_1+1} = \frac{B_{j_1,j_2,j_2}}{2j_2+1}$$

Ta SNAP potential was fit to a DFT-based training set containing 'usual suspects'

For each configuration in training set, fit total energy, atomic forces, stress

- Equilibrium lattice parameter
- Elastic constants (C₁₁, C₁₂, and C₄₄) and bulk modulus (B)
- Free surface energies: (100), (110), (111), and (112)
- Generalized planar stacking fault curves: {112} and {110}
- Energy-Volume (Contraction and Dilation) BCC, FCC, HCP, and A15
- Lattices with random atomic displacements
- Liquid structure

Example: DFT-based Generalized Stacking Fault Energies

Effect of Higher-order Bispectrum Components

- Liquid force errors decrease with increasing J
- Diminishing returns beyond J = 7/2

2 <i>J</i>	Ν	Ferr
1	2	2.09
2	5	1.39
3	8	0.66
4	14	0.53
5	20	0.44
6	30	0.35
7	40	0.30

SNAP potential yields good agreement with DFT results for some standard properties

	DFT	SNAP	Zhou (EAM)	ADP
Lattice Constant (Å)	3.320	3.316	3.303	3.305
B (Mbar)	1.954	1.908	1.928	1.971
C' = (1/2)(C ₁₁ – C ₁₂) (Mbar)	50.7	59.6	53.3	51.0
C ₄₄ (Mbar)	75.3	73.4	81.4	84.6
Vacancy Formation Energy (eV)	2.89	2.74	2.97	2.92
(100) Surface Energy (J/m ²)	2.40	2.68	2.34	2.24
(110) Surface Energy (J/m ²)	2.25	2.34	1.98	2.13
(111) Surface Energy (J/m ²)	2.58	2.66	2.56	2.57
(112) Surface Energy (J/m ²)	2.49	2.60	2.36	2.46
(110) Relaxed Unstable SFE (J/m ²)	0.72	1.14	0.75	0.58
(112) Relaxed Unstable SFE (J/m ²)	0.84	1.25	0.87	0.74

Liquid structure: SNAP and DFT are in excellent agreement

Liquid pair correlation function, g(r) computed at 3250 K (~melting point) and experimental density

- DFT: 100 atoms, 2 picoseconds
- SNAP: 1024 atoms, 200 picoseconds

SNAP potentials predict correct Peierls barrier for Ta screw dislocations

- Peierls barrier is the activation energy to move a screw dislocation
- Many simple interatomic potentials incorrectly predict a metastable state
 - Leads to erroneous dynamics
- SNAP potential agrees well with DFT calculations
 - Future work will explore dislocation dynamics based on this potential

Thompson et al. arxiv.org/abs/1409.3880 J. Comp. Phys. (2015)

SNAP Indium Phosphide

SNAP Defect Formation Energy Cand13: hand-tuned hyperparameters GA: Dakota-driven discovery of optimal hyper-parameters Double Anti Nac⁺ P^{Int} N² P² P^{Anti}⁺ N^{Anti} Double Anti N² Double Anti Double Anti N² Double Anti Doubl

Additional Challenges

- Two elements
- Different atom sizes
- Diverse structures
- Defect formation energies
- Sensitive to curvature Innovations
- Differentiate elements by: density weight, linear coefficients, neighbor cutoff
- Trained against relaxed defect structures
- Trained against deformed defect structures

Result (so far)

- Good overall fit
- Defect energy error > 1 eV

SNAP Silica: Promising Start

(Stan Moore, Paul Crozier, Peter Schultz)

Less than 3% error in predicted lattice parameters of 7 crystal polymorphs

Additional Challenges

- Electrostatics
- Started with no training data
- Goal: quantum-accurate
 prediction of Si/SiO2 interface

Innovations

- Generated training data adaptively, on-the-fly
- Added fixed point charges, long-range electrostatics

Result (so far)

- Good agreement with QM for SiO2 crystal polymorphs
- Good agreement with QM liquid structure for SiO2

Conclusions

- SNAP is a new formulation for interatomic potentials
 - Geometry described by bispectrum components
 - Energy is a linear regression of bispectrum components
- Works well for Ta
 - Liquid structure
 - Peierls barrier for screw dislocation motion
- Ongoing work
 - Extension to binary systems: InP, SiO2, TaO_x
- SNAP Ta potential published
 - arxiv.org/abs/1409.3880
 - J. Comp. Phys. (2015)
- SNAP Ta available in LAMMPS

Primary Collaborators

Laura Świler Stephen Foiles Garritt Tucker

Additional Collaborators

Christian Trott Peter Schultz Paul Crozier Stan Moore Adam Stephens

FitSnap.py: Robust Software Framework

Sandia National Laboratories

Key advantages of fitsnap.py

- Minimal file I/O
- Use of NumPy/SciPy
- Caching and reuse of data
- File-based input
- Supports parallel LAMMPS

Hyper-parameter Optimization

0 2000 4000 6000 8000 Candidate SNAP Potentials

