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Why	  Use	  Molecular	  Dynamics	  Simula8on	  
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•  Continuum models require underlying 
models of the materials behavior 

•  Quantum methods can provide very 
complete description for 100s of atoms 

•  Molecular Dynamics acts as the “missing 
link” 
•  Bridges between quantum and continuum 

models 
•  Moreover, extends quantum accuracy to 

continuum length scales; retaining atomistic 
information 



Example:	  Plas:city	  in	  BCC	  Metals	  
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Screw Dislocation Motion in BCC Tantalum 
VASP DFT 

N≈100 

Weinberger, Tucker, and 
Foiles, PRB (2013) 

LAMMPS MD 
N≈108 

Polycrystalline Tantalum Sample 



SNAP: Spectral Neighbor Analysis Potentials 

•  GAP (Gaussian Approximation Potential): Bartok, Csanyi et al., Phys. Rev. Lett, 2010. Uses 
3D neighbor density bispectrum and Gaussian process regression.  

•  SNAP (Spectral Neighbor Analysis Potential): Our SNAP approach uses GAP’s neighbor 
bispectrum, but replaces Gaussian process with linear regression.  
-  More robust 
-  Lower computational cost 
-  Decouples MD speed from training set size 
-  Enables large training data sets, more bispectrum coefficients 
-  Straightforward sensitivity analysis 
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Bispectrum Components as Descriptor	  
•  Neighbors of each atom are mapped onto unit sphere in 4D 

•  Expand density around each atom in a basis of 4D hyperspherical 
harmonics,  

•  Bispectrum components of the 4D hyperspherical harmonic expansion are 
used as the geometric descriptors of the local environment 

•  Preserves universal physical symmetries 
•  Rotation, translation, permutation 
•  Size-consistent 

θ0,θ,φ( ) = θ0
max r rcut , cos

−1(z r), tan−1(y x)( )

It is advantageous to use most of the 3-sphere, while still excluding the
region near the south pole where the configurational space becomes highly
compressed.

The natural basis for functions on the 3-sphere is formed by the 4D hy-
perspherical harmonics U j
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terized in terms of the three Euler angles, these functions are better known
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0(↵, �, �), the Wigner D-functions, which form the representations of
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where the expansion coe�cients are given by the inner product of the
neighbor density with the basis function. Because the neighbor density is a
weighted sum of �-functions, each expansion coe�cient can be written as a
sum over discrete values of the corresponding basis function,
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The expansion coe�cients uj

m,m

0 are complex-valued and they are not
directly useful as descriptors, because they are not invariant under rotation
of the polar coordinate frame. However, the following scalar triple products
of expansion coe�cients can be shown to be real-valued and invariant under
rotation [7].
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are coupling coe�cients, analogous to the Clebsch-

Gordan coe�cients for rotations on the 2-sphere. These invariants are the
components of the bispectrum. They characterize the strength of density
correlations at three points on the 3-sphere. The lowest-order components
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describe the coarsest features of the density function, while higher-order com-
ponents reflect finer detail. An analogous bispectrum can be defined on
the 2-sphere in terms of the spherical harmonics. In this case, the compo-
nents of the bispectrum are a superset of the second and third order bond-
orientational order parameters developed by Steinhardt et al. [11]. These in
turn are specific instances of the order parameters introduced in Landau’s
theory of phase transitions [12].

The coupling coe�cients are non-zero only for non-negative integer and
half-integer values of j1, j2, and j satisfying the conditions kj1�j2k  j  j1+
j2 and j1+ j2� j not half-integer [10]. In addition, B

j1,j2,j is symmetric in j1
and j2. Hence the number of distinct non-zero bispectrum components with
indices j1, j2, j not exceeding a positive integer J is (J +1)3. Furthermore, it
is proven in the appendix that bispectrum components with reordered indices
are related by the following identity:

B
j1,j2,j

2j + 1
=

B
j,j2,j1

2j1 + 1
=

B
j1,j,j2

2j2 + 1
. (6)

We can exploit this equivalence by further restricting j2  j1  j, in
which case the number of distinct bispectrum components drops to (J +
1)(J + 2)(J + 3

2)/3, a three-fold reduction in the limit of large J .

2.2. SNAP Potential Energy Function

Given the bispectrum components as descriptors of the neighborhood of
each atom, it remains to express the potential energy of a configuration of
N atoms in terms of these descriptors. We write the energy of the system
containing N atoms with positions rN as the sum of a reference energy E

ref

and a local energy E
local

E(rN) = E
ref

(rN) + E
local

(rN). (7)

The reference energy includes known physical phenomena, such as long-
range electrostatic interactions, for which well-established energy models ex-
ist. E

local

must capture all the additional e↵ects that are not accounted for
by the reference energy. Following Bartók et al. [1, 7] we assume that the
local energy can be decomposed into separate contributions for each atom,

E
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NX
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E
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Symmetry relation: 
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SNAP	  Fi<ng	  Process	  
FitSnap.py	  
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Dakota 
optimization, 

sensitivity 

“Hyper-parameters” 
•  Cutoff distance 
•  Group Weights 
•  Number of Terms 
•  Etc. 

fitsnap.py 
Communicate with 

LAMMPS; weighted 
regression to obtain 
SNAP coefficients 

LAMMPS 

QUEST 
QDFT 

Training 
Data 

Metrics 
•  Force residuals 
•  Energy residuals 
•  Elastic constants 
•  Etc. 

Bispectrum 
components & 
derivatives, 
reference potential 



Ta SNAP potential was fit to a DFT-based 
training set containing ‘usual suspects’ 

For each configuration in training set, fit total energy, atomic forces, stress 
•  Equilibrium lattice parameter 
•  Elastic constants (C11, C12, and C44) and bulk modulus (B) 
•  Free surface energies: (100), (110), (111), and (112) 
•  Generalized planar stacking fault curves: {112} and {110} 
•  Energy-Volume (Contraction and Dilation) - BCC, FCC, HCP, and A15 
•  Lattices with random atomic displacements 
•  Liquid structure 

Example: DFT-based Generalized Stacking Fault Energies 
(112)  (110)  
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Effect	  of	  Higher-‐order	  Bispectrum	  Components	  

2J" N" Ferr"
1" 2" 2.09"
2" 5" 1.39"
3" 8" 0.66"
4" 14" 0.53"
5" 20" 0.44"
6" 30" 0.35"
7" 40" 0.30"
"

•  Liquid force errors decrease with increasing J 
•  Diminishing returns beyond J = 7/2 
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SNAP	  poten:al	  yields	  good	  agreement	  with	  DFT	  
results	  for	  some	  standard	  proper:es	  

DFT SNAP Zhou (EAM) ADP 

Lattice Constant (Å) 3.320 3.316 3.303 3.305 

B (Mbar) 1.954 1.908 1.928 1.971 

C’ = (1/2)(C11 – C12) (Mbar) 50.7 59.6 53.3 51.0 

C44 (Mbar) 75.3 73.4 81.4 84.6 

Vacancy Formation Energy (eV) 2.89 2.74 2.97 2.92 

(100) Surface Energy (J/m2) 2.40 2.68 2.34 2.24 

(110) Surface Energy (J/m2) 2.25 2.34 1.98 2.13 

(111) Surface Energy (J/m2) 2.58 2.66 2.56 2.57 

(112) Surface Energy (J/m2) 2.49 2.60 2.36 2.46 

(110) Relaxed Unstable SFE (J/m2) 0.72 1.14 0.75 0.58 

(112) Relaxed Unstable SFE (J/m2) 0.84 1.25 0.87 0.74 
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Liquid structure: SNAP and DFT are in 
excellent agreement 

Liquid pair correlation function, g(r) computed at 3250 K (~melting point) 
and experimental density 

•  DFT: 100 atoms,  2 picoseconds 
•  SNAP: 1024 atoms, 200 picoseconds 
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SNAP potentials predict correct Peierls 
barrier for Ta screw dislocations  

•  Peierls barrier is the activation 
energy to move a screw 
dislocation 

•  Many simple interatomic 
potentials incorrectly predict a 
metastable state 
•  Leads to erroneous dynamics 

•  SNAP potential agrees well 
with DFT calculations 
•  Future work will explore 

dislocation dynamics based on 
this potential 

Thompson et al. arxiv.org/abs/1409.3880 
J. Comp. Phys. (2015) 11 



SNAP	  Indium	  Phosphide	  
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Additional Challenges 
•  Two elements 
•  Different atom sizes 
•  Diverse structures 
•  Defect formation energies 
•  Sensitive to curvature 
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SNAP Defect Formation Energy 
q  Cand13: hand-tuned hyper-

parameters 
q  GA: Dakota-driven discovery of 

optimal hyper-parameters 

Innovations 
•  Differentiate elements by: 

density weight, linear 
coefficients, neighbor cutoff 

•  Trained against relaxed defect 
structures 

•  Trained against deformed 
defect structures 

Result (so far) 
•  Good overall fit 
•  Defect energy error > 1 eV 



Less than 3% error in predicted lattice parameters of 7 crystal polymorphs  

SNAP	  Silica:	  Promising	  Start	  
(Stan	  Moore,	  Paul	  Crozier,	  Peter	  Schultz)	  
	   Additional Challenges 

•  Electrostatics 
•  Started with no training data 
•  Goal: quantum-accurate 

prediction of Si/SiO2 interface 
  
Innovations 
•  Generated training data 

adaptively, on-the-fly 
•  Added fixed point charges, 

long-range electrostatics 
 
Result (so far) 
•  Good agreement with QM for 

SiO2 crystal polymorphs 
•  Good agreement with QM liquid 

structure for SiO2 

13	  

Good agreement with QM liquid structure for SiO2 



Conclusions 
§  SNAP is a new formulation for interatomic potentials 

§  Geometry described by bispectrum components 
§  Energy is a linear regression of bispectrum 

components 
§  Works well for Ta 

§  Liquid structure 
§  Peierls barrier for screw dislocation motion 

§  Ongoing work 
§  Extension to binary systems: InP, SiO2, TaOx 

§  SNAP Ta potential published 
§   arxiv.org/abs/1409.3880 
§   J. Comp. Phys. (2015) 

§  SNAP Ta available in LAMMPS 

Primary Collaborators 
Laura Swiler 
Stephen Foiles 
Garritt Tucker 
 
Additional Collaborators 
Christian Trott 
Peter Schultz 
Paul Crozier 
Stan Moore 
Adam Stephens 



FitSnap.py:	  Robust	  SoKware	  Framework	  
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Key advantages of fitsnap.py 
•  Minimal file I/O 
•  Use of NumPy/SciPy 
•  Caching and reuse of data 
•  File-based input 
•  Supports parallel LAMMPS 
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