

Recent Extensions of Dissipative Particle Dynamics Methods and Application to Hierarchical Multiscale Simulation

James P. Larentzos¹, Brian C. Barnes², John K. Brennan², Michael S. Sellers², Timothy I. Mattox¹, and Martin Lísal^{3,4}

¹Engility Corporation at the U.S. Army Research Laboratory

²U.S. Army Research Laboratory, Rodman Materials Research Laboratory, Aberdeen Proving Ground, MD, USA 21005

³Laboratory of Chemistry and Physics of Aerosols, Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Rozvojová 135/1, 165 02 Prague 6-Suchdol, Czech Republic

⁴Department of Physics, Faculty of Science, J.E. Purkinje University, České Mládeže 8, 400 96 Ústí n. Lab., Czech Republic

The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

Motivation

Modeling Energetic Materials

RDECOM[®]

- Understand → Predict / Tailor
- an explosive formulation exhibits
 phenomena at many length scales
- various simulation types are suited for particular scales
- Multi-scale Response of Energetic Materials (**MREM**)

ARL

Valuable information at every scale

Skidmore, C.B., Phillips, D.S., Howe, P.M., Mang, J.T., and J.A. Romero, 1998, 11th International Detonation Symposium, Snowmass Village, Colorado, pp. 268.

•Gain Computational Speed By Removing Atomistic Detail

• Challenge: Retaining Atomistic Physics With CG Model

Coarse-Grain Simulation ARL

Coarse-Grain Method Development

Need to capture known thermo-mechanical responses:

- Phase transitions
- ✓ Structural rearrangements
- Mechanical deformation
- Chemical reactivity

Dissipative Particle Dynamics (DPD) method

Dissipative Particle Dynamics (DPD)

$$m_i \frac{d\mathbf{v}_i}{dt} = \sum_{i \neq j} \left(\mathbf{F}_{ij}^{CG} + \mathbf{F}_{ij}^{D} + \mathbf{F}_{ij}^{R} \right)$$

Additional forces on particle can recapture lost degrees of freedom

Hoogerbrugge and Koelman, Europhys. Lett., 19 (1992)

The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

Modeling Materials: Coarse Grained Scale (DPD-E)

Constant Energy Dissipative Particle Dynamics (DPD-E)

$$E = \sum_{i} KE_{i} + \sum_{i} U_{i-CG} + \sum_{i} u_{i}$$

Explicit Implicit

Explicit

internal energy and temperature of cg particle

Lisal, M., Moore, J.D., Izvekov, S., Schweigert, I.V., Larentzos, J.P., Brennan, J.K., in preparation

Conservation of energy/momentum – Particles exchange momentum/heat

- J. Bonet Avalos and A. Mackie, Europhys. Lett., 40 (1997)
- P. Espanol, Europhys. Lett., 40 (1997)

UNCLASSIFIED

Constant Energy Dissipative Particle Dynamics (DPD-E) with Reactions

coarse-grain reactor

Generalization and extension of pioneering work by Maillet, Soulard, Stoltz

J. B. Maillet, L. Soulard, and G. Stoltz A reduced model for shock and detonation waves. II. The reactive case Europhys. Lett. 78, 68001 (2007)

UNCLASSIFIED

Constant Energy Dissipative Particle Dynamics (DPD-E) with Reactions

consider additional progress variable for each particle

 \rightarrow extent of reaction: λ_i

reactions occur within CG particle and NOT through bond breaking between particles

- requires input of reaction mechanisms and kinetics
- chemical energy released/gained is translated to internal and kinetic energy

Generalization and extension of pioneering work by Maillet, Soulard, Stoltz

J. B. Maillet, L. Soulard, and G. Stoltz A reduced model for shock and detonation waves. II. The reactive case Europhys. Lett. 78, 68001 (2007)

RDX Decomposition

UNCLASSIFIED

CG Particle Reactor

Reduced Reaction Model

$RDX \rightarrow 3HCN + 3/2(NO2 + NO + H2O)$	endothermic
$\label{eq:hcn} \begin{array}{l} \text{HCN} + \text{NO2} \rightarrow \text{NO} + \frac{1}{2}(\text{N2} + \text{H2}) + \text{CO} \\ \text{HCN} + \text{NO} \rightarrow \text{CO} + \text{N2} + \frac{1}{2}\text{H2} \\ \text{NO} + \text{CO} \rightarrow \frac{1}{2}\text{N2} + \text{CO2} \end{array}$	exothermic

Arrhenius Form $k_{Rx}(\theta_i) = A_{Rx}e^{-E_{a-Rx}/k_B\theta_i}$

Brennan, J.K., Lísal, M., Moore, J.D., Izvekov, S., Schweigert, I.V., Larentzos, J.P. Coarse-Grain Model Simulations of Nonequilibrium Dynamics in Heterogeneous Materials *The Journal of Physical Chemistry Letters* **2014** *5* (12)

RDX Decomposition

In General

- Not an explicit "reactive" potential
- No bond breaking
- Number of particles is constant
- Requires input of chemical reactions and kinetics
- Chemical character is represented by change in inter-particle potential

Simulate chemistry through a change in particle energy - internal/external

Brennan, J.K., Lísal, M., Moore, J.D., Izvekov, S., Schweigert, I.V., Larentzos, J.P. Coarse-Grain Model Simulations of Nonequilibrium Dynamics in Heterogeneous Materials *The Journal of Physical Chemistry Letters* **2014** *5* (12)

Shock Initiation of RDX

10nm Void – 3km/s Shock

- Shock initiation in perfect crystal
- Collapsing void causes initiation at downstream face
- Reactions at void location proceed to greater extent, faster

ARL

• DPD typically integrated using standard numerical integrators (e.g., velocity-Verlet)

Deterministic Integration

• Velocity-Verlet Integration #1: For i = 1, ..., N

$$\mathbf{p}_{i} \leftarrow \mathbf{p}_{i} + \frac{\Delta t}{2} \mathbf{F}_{i}$$
$$\mathbf{r}_{i} \leftarrow \mathbf{r}_{i} + \Delta t \, \frac{\mathbf{p}_{i}}{m_{i}}$$

Force Calculation:

$$\mathbf{F}_{i} = \sum_{j \neq i} \left(\mathbf{F}_{ij}^{C} + \mathbf{F}_{ij}^{D} + \mathbf{F}_{ij}^{R} \right)$$

Velocity-Verlet Integration #2: For i = 1, ..., N

$$\mathbf{p}_i \leftarrow \mathbf{p}_i + \frac{\Delta t}{2} \mathbf{F}_i$$

Lisal, Brennan, Bonet Avalos, J. Chem. Phys., 135 (2011)

UNCLASSIFIED

DPD with Velocity-Verlet Integration

- DPD typically integrated using standard numerical integrators (e.g., velocity-Verlet)
- Velocity-Verlet algorithm works well for DPD, but DPD-E limited to small timesteps

Lisal, Brennan, Bonet Avalos, J. Chem. Phys., 135 (2011)

UNCLASSIFIED

DPD with Velocity-Verlet Integration

- DPD typically integrated using standard numerical integrators (e.g., velocity-Verlet)
- Velocity-Verlet algorithm works well for DPD, but DPD-E limited to small timesteps
- Stochastic nature of the algorithm requires special consideration

Deterministic Integration

Velocity-Verlet Integration #1: For i = 1, ..., N

$$\mathbf{p}_i \leftarrow \mathbf{p}_i + \frac{\Delta t}{2} \mathbf{F}_i$$
$$\mathbf{r}_i \leftarrow \mathbf{r}_i + \Delta t \, \frac{\mathbf{p}_i}{m_i}$$

- Force Calculation: $\mathbf{F}_{i} = \sum_{j \neq i} (\mathbf{F}_{ij}^{C} - (\mathbf{F}_{ij}^{D} + \mathbf{F}_{ij}^{R}))$
- Velocity-Verlet Integration #2: For i = 1, ..., N

$$\mathbf{p}_i \leftarrow \mathbf{p}_i + \frac{\Delta t}{2} \mathbf{F}_i$$

Split stochastic components of the force into separate integration steps through the Shardlow splitting technique

Lisal, Brennan, Bonet Avalos, J. Chem. Phys., 135 (2011)

Shardlow Splitting Algorithm ARL

- Split momenta integration into deterministic dynamics and stochastic dynamics
- Both can then be integrated using standard numerical integrators (e.g., velocity-Verlet)
- Readily extended to other DPD variants (not true for other integrators)

RDECONT)

Larger time steps allowable (~10-100x larger, with comparable energy conservation)

DPD-E (Reduced Units) (Serial Processor)

Recursive nature of the stochastic integration makes SSA difficult to parallelize!

Lisal, Brennan, Bonet Avalos, J. Chem. Phys., 135 (2011)

The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

SSA Parallelization in a Domain Decomposition Framework

Domain Decomposition

Larentzos, Brennan, Moore, Lísal and Mattson, Comp. Phys. Commun., 185, 1987-1998 (2013).

Staged Communication

- Split stochastic integration into multiple stages
 - Particles interact on exactly one processor per stage
- Define a directional communication scheme
 - Active Interaction Regions (AIR) turn particle interactions on/off in a consistent direction
 - Account for all particle interactions

 \odot

 \odot

9

13⁰

5

The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

Summary

Constant Energy DPD (DPD-E) in LAMMPS

RDECOM[®]

- Shardlow Splitting Algorithm (SSA) Integration Scheme
- Allows for larger time steps w/ better energy conservation

Reaction DPD (DPD-RX) in LAMMPS

- Extension of DPD-E
- Works seamlessly with SSA stochastic integration scheme
- Concentration-dependent potentials
 - Exponential-6 and table potentials
- Concentration-dependent equation of state (EOS)
- Reaction kinetics solvers for non-stiff and stiff ODEs
 - 4th Order Runge-Kutta
 - GNU Scientific Library (GSL) suite of ODE solvers
 - CVODE
 - CUDA implementations for RK4 and CVODE solvers

Future Work

- Continued model refinements potentials, reaction set
- Investigate effects of microstructure

Top-Down Approach:

Heavily reliant on testingExpensive, time consumingLimited in scope

Future Vision:

Top-Down Removed

Progression to Payoff

UNCLASSIFIED

Plan to Implementation

Solution Structure

Solution Execution at Runtime

- Sacrifice atomistic detail
- Gain computational speed

S. Izvekov, P.W. Chung, and B.M. Rice, *J. Chem. Phys.*, **135**, 044112 (2011)

Fine-scale Method

Dissipative Particle Dynamics (DPD-E) Equation of Motion

• Both momentum and energy conserved

RDECOM[®]

• Internal energy variable assigned to each particle, u_i

Energy dissipated by frictional forces stored in particle internal energy

J. Bonet Avalos and A. Mackie, Europhys. Lett., 40 (1997)

P. Espanol, Europhys. Lett., 40 (1997)

The Nation's Premier Laboratory for Land Forces

U.S.ARMY

HMS Conceptual View

W. E, B. Engquist, X. Li, W. Ren, and E. Vanden-Eijnden, Commun. Comp. Phys., 2, 367-450 (2007)

RDECOM[®]

J. Knap, C.E. Spear, K.W. Leiter, R. Becker and D.A. Powell *Int. J. Num. Meth. Eng., submitted*

ARL

Automating LAMMPS

- Simulation & Analysis
- Swapping Ensembles
- Start to Finish

How??

- The Python Interface don't go alone: numpy, mpi4py
 - "Program yourself out of a job"

Fine-scale Implementation **ARL**

LIME: LAMMPS Integrated **Materials Engine**

RDECOM

New Tool for Automating **Classical MD/DPD**

 Adaptable, Extensible •"On-the-fly" HMS Fine-scale Implemented Coarse-Grain Model of RDX Generated EOS Tables for HMS Validation (below)

RDECOM[®]

Initial Validation

ALE3D Equation of State (EOS) Replaced by LIME EOS

- Finite Element Shock: LIME EOS Tables Improve Agreement Between Continuum and DPD Simulations Compared to Old EOS Tables
- DPD Speedup with LIME Variant & Adaptive Erpenbeck Method: ~20x Prior Method

Established baseline for assessing accuracy and performance of subsequent embedded models.

U.S.ARM

Taylor Impact Test #1

Continuum Simulation of Taylor Test: LIME EOS Driven

RDECOM[®]

Simulation Details

U.S.ARM

- A Cylinder of Solid RDX Impacting a Rigid Anvil
- Impact Speed 200 m/s
- cm Lengths, Axial Symm.
- Colored by Temperature
- ALE3D & LIME EOS Tables
- Proof-of-Concept Before "On-the-fly" HMS

RDX Deformation and Hot Elements Observed

Taylor Impact Test #2

Table-driven precursor of "on the fly"

- Impact speed 55 m/s •
- 200 elements •

U.S.ARM

- Different timesteps due to larger elements
- Avoided pressures, densities where ۲ real material may fracture
- Reference simulation

UNCLASSIFIED

Taylor Impact Test #3

"On the fly" Hierarchical Multiscale

HMS has a heartbeat!

- ~200,000 total core hours
- Randomness due to statistical • nature of simulations

RDECOM

•

HPC Challenges

- Random failures (Lustre, Cray CCM ssh) stop jobs in progress; error handling
- Cray does not implement MPI_SPAWN
- 34,800 fully automated results 64 cores/elem needed for good throughput

Time=0

HMS Roadmap

Bottom-Up Development: a Multi-Year Effort to Improve Material Models for Hierarchical Multiscale Simulation

Material Model Functionality

 Reactive equation of state (DPD-RX implementation for LIME)

RDECOM[®]

- Defect and Initiation Statistics
- Deviatoric Stress & Plasticity
- Porosity
- Multi-Component Starting Systems (such as Binders or Solvent)
- More Complex Fine-Scale Models

Development By All Collaborators

- HMS: Adaptive Sampling (Speed!)
- HMS: Scaling to 100k CPU Cores
- ALE3D: Failure, Plasticity Models
- DPD: New, Improved CG Models
- DPD: Heterogeneous Computing
- LIME: Additional Material Properties
- LIME/HMS: Timescale Propagation

Credits

Energetics & DPD

John Brennan Martin Lísal (Czech Acad. Sci.) Sergey Izvekov Brian Barnes Michael Sellers Betsy Rice William Mattson

Continuum & ALE3D Rich Becker

Hierarchical Multiscale

Jaroslaw Knap Carrie Spear (TAPE) Ken Leiter

Funding

DoD / ARL Mission Funding HPCMP PETTT Oak Ridge Associated Universities Postdoctoral Fellowship

Computing Resources

DoD HPCMP Defense Supercomputing Resource Centers (DSRCs)

DoD HPC Modernization Program (HPCMP)

Productivity Enhancement, Tech Transfer & Training (PETTT)

James P. Larentzos (Engility) Timothy I. Mattox (Engility) Sean Ziegeler (Engility) Christopher Stone (Computational Science & Engineering, LLC)

