
1	
  Ma%hew	
  Lane	
  -­‐	
  jlane@sandia.gov	
  

LAMMPS	
  User	
  Workshop	
  
Albuquerque,	
  NM	
  

5	
  August	
  2015	
  

Molecular modeling of high-pressure ramp waves in tantalum 

J.	
  Ma?hew	
  D.	
  Lane,	
  Stephen	
  Foiles	
  
	
  Hojun	
  Lim	
  and	
  Jus?n	
  L.	
  Brown	
  

Sandia	
  NaEonal	
  Laboratories,	
  
Albuquerque,	
  NM	
  

Sandia	
  Na?onal	
  Laboratories	
  is	
  a	
  mul?	
  program	
  laboratory	
  managed	
  and	
  operated	
  by	
  Sandia	
  
Corpora?on,	
  a	
  wholly	
  owned	
  subsidiary	
  of	
  Lockheed	
  Mar?n	
  Corpora?on,	
  for	
  the	
  U.S.	
  Department	
  of	
  
Energy's	
  Na?onal	
  Nuclear	
  Security	
  Administra?on	
  under	
  contract	
  DE-­‐AC04-­‐94AL85000.	
  	
  

SAND2015-­‐1614	
  C	
  



2	
  Ma%hew	
  Lane	
  -­‐	
  jlane@sandia.gov	
  

Z-­‐machine	
  at	
  Sandia	
  Na?onal	
  Labs	
  

22	
  MJ	
  stored	
  energy	
  
25	
  MA	
  peak	
  current	
  
100-­‐600	
  ns	
  rise	
  ?me	
  

33	
  m	
  in	
  diameter,	
  3	
  stories	
  high	
  

25	
  MA	
  is	
  the	
  max	
  current	
  load	
  of	
  160,000	
  homes	
  

Z-­‐machine	
  is	
  a	
  pulsed	
  power	
  device	
  which	
  
can	
  drive	
  mechanical	
  waves	
  in	
  both	
  
shock	
  and	
  quasi-­‐isentropic	
  condiEons	
  

	
  
•  Ramp	
  waves	
  to	
  explore	
  off-­‐Hugoniot	
  EOS	
  

•  Con?nuous	
  data	
  vs	
  single	
  shock	
  points	
  

•  Study	
  of	
  material	
  strength	
  at	
  extremely	
  
high	
  pressures	
  (>100s	
  of	
  GPa)	
  and	
  with	
  
control	
  over	
  strain	
  rates.	
  

•  Complementary	
  computa?onal	
  facili?es	
  
incorporate	
  quantum	
  (DFT),	
  classical	
  
(MD),	
  and	
  extensive	
  con?nuum	
  
modeling	
  to	
  support	
  
experiments	
  

Motivation for ramp wave simulation 
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Tantalum’s unexpected complexity   

•  Tantalum,	
  as	
  a	
  high-­‐Z	
  BCC	
  metal	
  with	
  no	
  high-­‐pressure	
  phase	
  transiEons,	
  
has	
  potenEal	
  use	
  a	
  standard	
  for	
  high-­‐pressure	
  studies.	
  	
  But,	
  its	
  properEes	
  
depend	
  on	
  poorly	
  understood	
  elasEc/plasEc	
  and	
  dislocaEon	
  dynamics.	
  

•  A	
  number	
  of	
  recent	
  papers	
  have	
  idenEfied	
  unusual	
  shock	
  and	
  ramp	
  wave	
  
response	
  in	
  tantalum,	
  especially	
  in	
  extracEng	
  dynamic	
  strength	
  response	
  

•  Strength	
  in	
  single-­‐crystal	
  -­‐	
  Comley,	
  et	
  al.	
  PRL,	
  110	
  115501	
  (2013)	
  
•  Strength	
  at	
  high-­‐pressure	
  and	
  strain-­‐rate	
  -­‐	
  	
  Brown	
  et	
  al.	
  JAP,	
  115	
  043530	
  (2014)	
  

Brown	
  et	
  al.	
  JAP,	
  114	
  223518	
  (2013)	
  
•  High-­‐pressure	
  ramp	
  to	
  330	
  GPa	
  -­‐	
  Davis	
  et	
  al.	
  JAP,	
  116	
  204903	
  (2014)	
  
•  Grain-­‐size	
  effects	
  on	
  plasQc	
  flow	
  -­‐	
  Park	
  et	
  al.	
  PRL,	
  114	
  065502	
  (2015)	
  

•  Significant	
  variaEon	
  in	
  methodology	
  and	
  materials	
  complicate:	
  
•  VariaQon	
  in	
  drivers	
  (laser	
  ablaQon	
  vs	
  flyer)	
  
•  VariaQon	
  in	
  strain	
  rates	
  (1010	
  to	
  105)	
  
•  VariaQon	
  in	
  material	
  microstructure	
  and	
  grain	
  texture	
  (characterized	
  and	
  uncharacterized)	
  
•  VariaQon	
  in	
  strength	
  extracQon	
  methods	
  (Rayleigh-­‐Taylor	
  instability	
  and	
  ramp-­‐release)	
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Molecular dynamics approach 

•  Classical	
  molecular	
  dynamics	
  	
  
•  Ta1	
  EAM	
  potenQal	
  by	
  Ravelo	
  was	
  fit	
  to	
  isothermal	
  
EOS	
  and	
  verified	
  against	
  Hugoniot	
  data	
  

–  	
  captures	
  twinning	
  and	
  plas?c	
  flow.	
  
•  Ramp	
  wave	
  modeled	
  with	
  acceleraQng	
  infinite-­‐mass	
  
piston	
  with	
  nonlinear	
  profile	
  vp	
  =	
  x/a	
  +	
  (x/a)3	
  

•  System	
  size	
  and	
  grain	
  structure	
  
•  20	
  x	
  20	
  x	
  131	
  nm	
  nanograin	
  polycrystalline	
  unit	
  cell	
  
replicated	
  in	
  z	
  to	
  20	
  µm	
  and	
  350	
  million	
  atoms	
  

•  Two	
  grain	
  sizes	
  of	
  5-­‐10	
  nm	
  and	
  8-­‐20	
  nm	
  

•  Strengths	
  of	
  MD	
  method	
  
•  Controlled	
  material	
  structures,	
  i.e.	
  grains,	
  defects	
  
•  Repeatable	
  loading	
  profiles	
  at	
  rates,	
  from	
  1011	
  to	
  108	
  	
  
•  Full	
  stress	
  state	
  throughout	
  the	
  sample	
  
•  However,	
  we	
  do	
  not	
  achieve	
  overlap	
  in	
  strain	
  rate,	
  
nor	
  microstructure.	
  

Several	
  MD	
  studies	
  of	
  shock,	
  plas8city	
  and	
  disloca8ons	
  
Ravelo,	
  et	
  al.,	
  PRB,	
  88	
  134101	
  (2013)	
  
Tang,	
  Bringa,	
  Meyers,	
  Mater.	
  Sci.	
  Eng.	
  580	
  414	
  (2013)	
  &	
  
TramonQna,	
  et	
  al.,	
  High	
  Energy	
  Density	
  Phys,	
  10	
  (2014)	
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Scaling	
  condi?ons	
  for	
  loading:	
  

Driving	
  piston	
  velocity	
  and	
  posi?on:	
  

Dynamic	
  similarity:	
  

Velocity 	
  Stress	
  
Strain 	
   	
  Temperature*	
  
Forces	
  Density	
  

Invariant	
  to	
  scaling:	
  
Strain rates 
Accelerations 
Times and distances 
any extensive variable… 

Not	
  invariant:	
  

=	
  1	
  

Using scaling to discern strain-rate dependence  

5	
  



6	
  Ma%hew	
  Lane	
  -­‐	
  jlane@sandia.gov	
  

All	
  ramp	
  waves	
  are	
  driven	
  
nonlinearly	
  from	
  0	
  to	
  2.4	
  
km/s,	
  giving	
  peak	
  pressures	
  
of	
  250	
  GPa.	
  

1010	
  1/s	
  strain	
  rate	
  
Rises	
  over	
  40	
  ps	
  
150	
  nm	
  &	
  2.5	
  million	
  atoms	
  
	
  
109	
  1/s	
  strain	
  rate	
  
Rises	
  over	
  400	
  ps	
  
1.5	
  µm	
  &	
  25	
  million	
  atoms	
  
	
  
108	
  1/s	
  strain	
  rate	
  
Rises	
  over	
  4	
  ns	
  
15	
  µm	
  &	
  350	
  million	
  atoms	
  

pa
rti
cl
e"

Scaled ramp profiles & strain-rate sensitivity 
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Overlaying	
  scaled	
  profiles	
  
reveals	
  where	
  the	
  wave	
  
profiles	
  are	
  dependent	
  on	
  
strain-­‐rate.	
  
	
  
Elas?c	
  precursor	
  and	
  
precursor	
  decay	
  depends	
  
significantly	
  on	
  strain	
  rates.	
  
	
  
High	
  pressure	
  por?ons	
  of	
  the	
  
waves	
  are	
  only	
  weakly	
  
dependent	
  on	
  loading	
  rate.	
  
	
  

Precursor dependence on strain rate  
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Comparison with experiment 

Inverse	
  Hall-­‐Petch	
  response	
  
dominated	
  by	
  grain	
  boundary	
  sliding	
  
Consistent	
  with	
  Tang,	
  Bringa,	
  Meyers,	
  
Mater.	
  Sci	
  Eng.	
  A,	
  580	
  (2013)	
  	
  

Davis	
  et	
  al.	
  JAP,	
  116	
  204903	
  (2014)	
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Extraction of strength 

Exaggerated	
  strength	
  is	
  
seen	
  below	
  100	
  GPa	
  in	
  the	
  
elas?c	
  precursor,	
  especially	
  
at	
  high	
  strain	
  rates.	
  	
  This	
  is	
  
likely	
  due	
  to	
  suppressed	
  
disloca?on	
  ac?vity	
  in	
  nano	
  
size	
  grains.	
  
	
  
Rela?vely	
  good	
  agreement	
  
with	
  pressure	
  dependence	
  
of	
  the	
  PTW	
  model	
  above	
  
100	
  Gpa,	
  especially	
  at	
  
lower	
  strain	
  rates.	
  

PTW	
  model	
  –	
  Preston,	
  Tonks,	
  Wallace,	
  JAP,	
  93	
  211	
  (2003)	
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Increased grain size 

Increasing	
  grain	
  size	
  by	
  a	
  factor	
  of	
  two,	
  to	
  
8-­‐20	
  nm	
  confirms	
  an	
  inverse	
  Hall-­‐Petch	
  
response	
  
	
  
At	
  high	
  strain	
  rates	
  the	
  stress-­‐strain	
  
rela?ons	
  are	
  not	
  impacted	
  by	
  grain	
  size,	
  
while	
  strength	
  is	
  marginally	
  increased.	
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�

Regime II Regime I 

h 

ΔU 

Modified	
  dislocaEon	
  kink-­‐pair	
  theory:	
  	
  
Temperature,	
  strain	
  rate	
  &	
  pressure	
  dependence	
  

Elas?c	
  Interac?on	
  Model	
  (Regime	
  I)	
  	
  	
  

Line	
  Tension	
  Model	
  (Regime	
  II)	
  	
  	
  

Exp. (Brown et al., 2014)  
Empirical fit 

T = 300 K 

Table 1: Material parameters for Equations (3)–(7) [16, 1, 2].

Equations Parameters Values

Eqns. (3)-(5)

�̇0 2.99⇥ 106 s�1

2Hk 0.85 eV

⌧0EI 406 MPa

⌧0LT 320 MPa

Eqn. (7)

µ0 69 GPa

µ0
T 0.009 GPa/K

↵1 7.9907⇥ 10�1 GPa�1

↵2 2.1292⇥ 10�3 GPa�2

follows [16]:

µ = µ0 � µ0
T (T � 300) + µ0

P

✓
P

⌘1/3

◆
. (6)

Here, µ0 is the shear modulus at the reference state
(T = 300 K and P = 0) and ⌘ = V0/V is the
compression, defined as the initial specific volume
(V0) decided by the specific volume (V ). µ0

P and µ0
T

represent derivatives of µ with respect to pressure
and temperature, respectively. Previously, it was
assumed that µ0

P is a constant and ⌘ varies with
the pressure. It was shown from Z-experiment that
µ0
P is not constant The following polynomial fit can

be used to reproduce the pressure dependent shear
modulus obtained from the Z-experiments.

µ = µ0 � µ0
T (T � 300) + ↵1P + ↵2P

2. (7)

Here, ↵1 and ↵2 are the fitting parameters. Figure 3
shows that empirical fit in Equation (7) accurately
reproduces measured µ versus pressure.

4. Ta model incorporating T , �̇ and P

Arrhenius law relates the rate of plastic deforma-
tion, �̇, to the activation enthalpy, �H, and tem-
perature, T , as follows:

�̇ = �̇0exp

✓
��H

kBT

◆
(8)

where �H is the activation enthalpy, kB is the
Boltzmann constant and �̇0 is a reference strain
rate. The activation enthalpy, �H, can be repre-
sented using the ratio of the resolved shear stress
(⌧⇤) and the Peierls stress (⌧p) as follows:

�H = �H0

✓
1�

✓
⌧⇤

⌧p

◆p◆q

(9)

Exp. (Brown et al., 2014)  
Empirical fit 

T = 300 K 

Figure 3: A plot of measured and fitted µ versus pressure.

where p and q are constants. Note that p = 0.5 and
q = 1 is the same form as the EI model and p = 1
and q = 2 is the LT model.

It is shown that ⌧p and �H0 are proportional to
shear modulus such that following relation can be
satisfied [17, 18]:

⌧p =
µ

µ0
⌧0p (10)

�H0 =
µ

µ0
�H0

0 . (11)

Using Equations (10) and (11), Equation (9) can
be rewritten as:

�H =
µ

µ0
�H0

0

✓
1�

✓
µ0

µ

⌧⇤

⌧0p

◆p◆q

. (12)

Here, µ0 is the reference shear modulus. Using
Equations (8) and (12), ⌧⇤ can be represented as
follows:

⌧⇤ =
µ

µ0
⌧0p

 
1�

✓
µ0

µ

kBT

�H0
0

ln
�̇0
�̇

◆1/q
!1/p

. (13)

Similarly, we can apply the same µ dependence
to the kink-pair model as follows:

⌧⇤EI =
µ

µ0
⌧0EI

✓
1� µ0

µ

T

T 0
c (�̇)

◆2

(14)

⌧⇤LT =
µ

µ0
⌧0LT

 
1�

✓
µ0

µ

T

T 0
c (�̇)

◆1/2
!
, (15)
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3

 τ T , γ( ) = τ * T , γ( ) +τ obs
Thermal Athermal 

In FCC metals,  

In BCC metals,   

τ * ≈ 0
τ * >> 0 T << Tc( )

Temperature	
  and	
  strain	
  rate	
  dependence	
   Pressure	
  dependence	
  

Ta crystal plasticity for low-rate strength model 
Hojun	
  Lim	
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Exp. (Brown et al., 2014) 
SG model 
PTW model 
SGL model 
LM model 
Current model 

Model prediction 
Hoge and Mukherjee (1977) 
Adams and Iannucci (1961) 
Lim et al. (2015) 
Chen and Grain (1996) 
Voyiadjis and Abed (2006) 
Park et al. (2011) 

Model prediction 
Hoge and Mukherjee (1977) 
Park et al. (2011) 

 !ε = 10-4  s-1 

where

T 0
c =

2H0
k

kB ln (�̇0/�̇)
. (16)

Here, T 0
c and 2H0

k are the critical temperature and
the kink activation enthalpy at P=0, respectively.

In order to convert shear stress of a single crystal
resolved onto active slip system to a tensile stress of
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Figure 6: A plot of pressure dependence of Ta from ramp
experiments and various strength models. The proposed
strength model agrees reasonably well with the Z ramp ex-
periments compared to other existing models.
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•  We’ve	
  studied	
  dynamic	
  ramp	
  wave	
  response	
  in	
  nanograin	
  
polycrystal	
  tantalum	
  at	
  1011	
  to	
  108	
  1/s	
  strain	
  rates	
  with	
  
molecular	
  dynamics	
  and	
  ramp	
  profile	
  scaling	
  analysis.	
  

•  Reasonable	
  agreement	
  in	
  stress-­‐strain	
  response	
  with	
  lower-­‐
rate	
  experiments	
  (Davis,	
  et	
  al.)	
  

•  Lower	
  strain	
  rate	
  brings	
  be%er	
  comparison,	
  especially	
  at	
  strain	
  below	
  0.2	
  
•  Over-­‐represented	
  elas?c	
  response	
  produces	
  a	
  more	
  robust	
  precursor	
  

which	
  may	
  drive	
  up	
  longitudinal	
  stress	
  at	
  high	
  strains.	
  

•  At	
  pressures	
  below	
  100	
  GPa	
  high	
  strength	
  is	
  observed	
  due	
  to	
  
nanograin	
  suppression	
  of	
  disloca?ons	
  (inverse	
  Hall-­‐Petch).	
  

•  Above	
  100	
  GPa	
  we	
  show	
  good	
  agreement	
  with	
  high-­‐pressure	
  
and	
  high	
  strain-­‐rate	
  trends	
  in	
  the	
  PTW	
  model.	
  

Summary and conclusions 
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175 m/s 

Ta 

4340 steel 

38.1 mm 

7.6 mm 

•  ALEGRA	
  solid	
  dynamics	
  code	
  (Sandia)	
  
•  Kerley	
  Mie-­‐Grüneisen	
  equa?on	
  of	
  state	
  
•  Strength	
  models:	
  

Exp.*	
   Sim.	
  

Taylor	
  cylinder	
  impact	
  test	
  

Deformed	
  geometry	
  

*	
  Maudline	
  et	
  al.,	
  IJP	
  (1999)	
  

-­‐  Kink-­‐pair	
  (KP)	
  model	
  
-­‐  Johnson-­‐Cook	
  (JC)	
  model	
  	
  
-­‐  Zerilli-­‐Armstrong	
  (ZA)	
  model	
  

High-rate dynamic simulations 


