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Z-‐machine	  at	  Sandia	  Na?onal	  Labs	  

22	  MJ	  stored	  energy	  
25	  MA	  peak	  current	  
100-‐600	  ns	  rise	  ?me	  

33	  m	  in	  diameter,	  3	  stories	  high	  

25	  MA	  is	  the	  max	  current	  load	  of	  160,000	  homes	  

Z-‐machine	  is	  a	  pulsed	  power	  device	  which	  
can	  drive	  mechanical	  waves	  in	  both	  
shock	  and	  quasi-‐isentropic	  condiEons	  

	  
•  Ramp	  waves	  to	  explore	  off-‐Hugoniot	  EOS	  

•  Con?nuous	  data	  vs	  single	  shock	  points	  

•  Study	  of	  material	  strength	  at	  extremely	  
high	  pressures	  (>100s	  of	  GPa)	  and	  with	  
control	  over	  strain	  rates.	  

•  Complementary	  computa?onal	  facili?es	  
incorporate	  quantum	  (DFT),	  classical	  
(MD),	  and	  extensive	  con?nuum	  
modeling	  to	  support	  
experiments	  

Motivation for ramp wave simulation 
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Tantalum’s unexpected complexity   

•  Tantalum,	  as	  a	  high-‐Z	  BCC	  metal	  with	  no	  high-‐pressure	  phase	  transiEons,	  
has	  potenEal	  use	  a	  standard	  for	  high-‐pressure	  studies.	  	  But,	  its	  properEes	  
depend	  on	  poorly	  understood	  elasEc/plasEc	  and	  dislocaEon	  dynamics.	  

•  A	  number	  of	  recent	  papers	  have	  idenEfied	  unusual	  shock	  and	  ramp	  wave	  
response	  in	  tantalum,	  especially	  in	  extracEng	  dynamic	  strength	  response	  

•  Strength	  in	  single-‐crystal	  -‐	  Comley,	  et	  al.	  PRL,	  110	  115501	  (2013)	  
•  Strength	  at	  high-‐pressure	  and	  strain-‐rate	  -‐	  	  Brown	  et	  al.	  JAP,	  115	  043530	  (2014)	  

Brown	  et	  al.	  JAP,	  114	  223518	  (2013)	  
•  High-‐pressure	  ramp	  to	  330	  GPa	  -‐	  Davis	  et	  al.	  JAP,	  116	  204903	  (2014)	  
•  Grain-‐size	  effects	  on	  plasQc	  flow	  -‐	  Park	  et	  al.	  PRL,	  114	  065502	  (2015)	  

•  Significant	  variaEon	  in	  methodology	  and	  materials	  complicate:	  
•  VariaQon	  in	  drivers	  (laser	  ablaQon	  vs	  flyer)	  
•  VariaQon	  in	  strain	  rates	  (1010	  to	  105)	  
•  VariaQon	  in	  material	  microstructure	  and	  grain	  texture	  (characterized	  and	  uncharacterized)	  
•  VariaQon	  in	  strength	  extracQon	  methods	  (Rayleigh-‐Taylor	  instability	  and	  ramp-‐release)	  
	  



4	  Ma%hew	  Lane	  -‐	  jlane@sandia.gov	  

Molecular dynamics approach 

•  Classical	  molecular	  dynamics	  	  
•  Ta1	  EAM	  potenQal	  by	  Ravelo	  was	  fit	  to	  isothermal	  
EOS	  and	  verified	  against	  Hugoniot	  data	  

–  	  captures	  twinning	  and	  plas?c	  flow.	  
•  Ramp	  wave	  modeled	  with	  acceleraQng	  infinite-‐mass	  
piston	  with	  nonlinear	  profile	  vp	  =	  x/a	  +	  (x/a)3	  

•  System	  size	  and	  grain	  structure	  
•  20	  x	  20	  x	  131	  nm	  nanograin	  polycrystalline	  unit	  cell	  
replicated	  in	  z	  to	  20	  µm	  and	  350	  million	  atoms	  

•  Two	  grain	  sizes	  of	  5-‐10	  nm	  and	  8-‐20	  nm	  

•  Strengths	  of	  MD	  method	  
•  Controlled	  material	  structures,	  i.e.	  grains,	  defects	  
•  Repeatable	  loading	  profiles	  at	  rates,	  from	  1011	  to	  108	  	  
•  Full	  stress	  state	  throughout	  the	  sample	  
•  However,	  we	  do	  not	  achieve	  overlap	  in	  strain	  rate,	  
nor	  microstructure.	  

Several	  MD	  studies	  of	  shock,	  plas8city	  and	  disloca8ons	  
Ravelo,	  et	  al.,	  PRB,	  88	  134101	  (2013)	  
Tang,	  Bringa,	  Meyers,	  Mater.	  Sci.	  Eng.	  580	  414	  (2013)	  &	  
TramonQna,	  et	  al.,	  High	  Energy	  Density	  Phys,	  10	  (2014)	  
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Scaling	  condi?ons	  for	  loading:	  

Driving	  piston	  velocity	  and	  posi?on:	  

Dynamic	  similarity:	  

Velocity 	  Stress	  
Strain 	   	  Temperature*	  
Forces	  Density	  

Invariant	  to	  scaling:	  
Strain rates 
Accelerations 
Times and distances 
any extensive variable… 

Not	  invariant:	  

=	  1	  

Using scaling to discern strain-rate dependence  

5	  
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All	  ramp	  waves	  are	  driven	  
nonlinearly	  from	  0	  to	  2.4	  
km/s,	  giving	  peak	  pressures	  
of	  250	  GPa.	  

1010	  1/s	  strain	  rate	  
Rises	  over	  40	  ps	  
150	  nm	  &	  2.5	  million	  atoms	  
	  
109	  1/s	  strain	  rate	  
Rises	  over	  400	  ps	  
1.5	  µm	  &	  25	  million	  atoms	  
	  
108	  1/s	  strain	  rate	  
Rises	  over	  4	  ns	  
15	  µm	  &	  350	  million	  atoms	  

pa
rti
cl
e"

Scaled ramp profiles & strain-rate sensitivity 
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Overlaying	  scaled	  profiles	  
reveals	  where	  the	  wave	  
profiles	  are	  dependent	  on	  
strain-‐rate.	  
	  
Elas?c	  precursor	  and	  
precursor	  decay	  depends	  
significantly	  on	  strain	  rates.	  
	  
High	  pressure	  por?ons	  of	  the	  
waves	  are	  only	  weakly	  
dependent	  on	  loading	  rate.	  
	  

Precursor dependence on strain rate  
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Comparison with experiment 

Inverse	  Hall-‐Petch	  response	  
dominated	  by	  grain	  boundary	  sliding	  
Consistent	  with	  Tang,	  Bringa,	  Meyers,	  
Mater.	  Sci	  Eng.	  A,	  580	  (2013)	  	  

Davis	  et	  al.	  JAP,	  116	  204903	  (2014)	  
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Extraction of strength 

Exaggerated	  strength	  is	  
seen	  below	  100	  GPa	  in	  the	  
elas?c	  precursor,	  especially	  
at	  high	  strain	  rates.	  	  This	  is	  
likely	  due	  to	  suppressed	  
disloca?on	  ac?vity	  in	  nano	  
size	  grains.	  
	  
Rela?vely	  good	  agreement	  
with	  pressure	  dependence	  
of	  the	  PTW	  model	  above	  
100	  Gpa,	  especially	  at	  
lower	  strain	  rates.	  

PTW	  model	  –	  Preston,	  Tonks,	  Wallace,	  JAP,	  93	  211	  (2003)	  
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Increased grain size 

Increasing	  grain	  size	  by	  a	  factor	  of	  two,	  to	  
8-‐20	  nm	  confirms	  an	  inverse	  Hall-‐Petch	  
response	  
	  
At	  high	  strain	  rates	  the	  stress-‐strain	  
rela?ons	  are	  not	  impacted	  by	  grain	  size,	  
while	  strength	  is	  marginally	  increased.	  
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�

Regime II Regime I 

h 

ΔU 

Modified	  dislocaEon	  kink-‐pair	  theory:	  	  
Temperature,	  strain	  rate	  &	  pressure	  dependence	  

Elas?c	  Interac?on	  Model	  (Regime	  I)	  	  	  

Line	  Tension	  Model	  (Regime	  II)	  	  	  

Exp. (Brown et al., 2014)  
Empirical fit 

T = 300 K 

Table 1: Material parameters for Equations (3)–(7) [16, 1, 2].

Equations Parameters Values

Eqns. (3)-(5)

�̇0 2.99⇥ 106 s�1

2Hk 0.85 eV

⌧0EI 406 MPa

⌧0LT 320 MPa

Eqn. (7)

µ0 69 GPa

µ0
T 0.009 GPa/K

↵1 7.9907⇥ 10�1 GPa�1

↵2 2.1292⇥ 10�3 GPa�2

follows [16]:

µ = µ0 � µ0
T (T � 300) + µ0

P

✓
P

⌘1/3

◆
. (6)

Here, µ0 is the shear modulus at the reference state
(T = 300 K and P = 0) and ⌘ = V0/V is the
compression, defined as the initial specific volume
(V0) decided by the specific volume (V ). µ0

P and µ0
T

represent derivatives of µ with respect to pressure
and temperature, respectively. Previously, it was
assumed that µ0

P is a constant and ⌘ varies with
the pressure. It was shown from Z-experiment that
µ0
P is not constant The following polynomial fit can

be used to reproduce the pressure dependent shear
modulus obtained from the Z-experiments.

µ = µ0 � µ0
T (T � 300) + ↵1P + ↵2P

2. (7)

Here, ↵1 and ↵2 are the fitting parameters. Figure 3
shows that empirical fit in Equation (7) accurately
reproduces measured µ versus pressure.

4. Ta model incorporating T , �̇ and P

Arrhenius law relates the rate of plastic deforma-
tion, �̇, to the activation enthalpy, �H, and tem-
perature, T , as follows:

�̇ = �̇0exp

✓
��H

kBT

◆
(8)

where �H is the activation enthalpy, kB is the
Boltzmann constant and �̇0 is a reference strain
rate. The activation enthalpy, �H, can be repre-
sented using the ratio of the resolved shear stress
(⌧⇤) and the Peierls stress (⌧p) as follows:

�H = �H0

✓
1�

✓
⌧⇤

⌧p

◆p◆q

(9)

Exp. (Brown et al., 2014)  
Empirical fit 

T = 300 K 

Figure 3: A plot of measured and fitted µ versus pressure.

where p and q are constants. Note that p = 0.5 and
q = 1 is the same form as the EI model and p = 1
and q = 2 is the LT model.

It is shown that ⌧p and �H0 are proportional to
shear modulus such that following relation can be
satisfied [17, 18]:

⌧p =
µ

µ0
⌧0p (10)

�H0 =
µ

µ0
�H0

0 . (11)

Using Equations (10) and (11), Equation (9) can
be rewritten as:

�H =
µ

µ0
�H0

0
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1�
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µ

⌧⇤

⌧0p

◆p◆q

. (12)

Here, µ0 is the reference shear modulus. Using
Equations (8) and (12), ⌧⇤ can be represented as
follows:

⌧⇤ =
µ

µ0
⌧0p

 
1�

✓
µ0

µ

kBT

�H0
0

ln
�̇0
�̇

◆1/q
!1/p

. (13)

Similarly, we can apply the same µ dependence
to the kink-pair model as follows:

⌧⇤EI =
µ

µ0
⌧0EI

✓
1� µ0

µ

T

T 0
c (�̇)

◆2

(14)

⌧⇤LT =
µ

µ0
⌧0LT

 
1�
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µ0

µ

T

T 0
c (�̇)

◆1/2
!
, (15)

3

Table 1: Material parameters for Equations (3)–(7) [16, 1, 2].

Equations Parameters Values

Eqns. (3)-(5)

�̇0 2.99⇥ 106 s�1

2Hk 0.85 eV

⌧0EI 406 MPa

⌧0LT 320 MPa

Eqn. (7)

µ0 69 GPa

µ0
T 0.009 GPa/K

↵1 7.9907⇥ 10�1 GPa�1

↵2 2.1292⇥ 10�3 GPa�2

follows [16]:

µ = µ0 � µ0
T (T � 300) + µ0

P

✓
P

⌘1/3

◆
. (6)

Here, µ0 is the shear modulus at the reference state
(T = 300 K and P = 0) and ⌘ = V0/V is the
compression, defined as the initial specific volume
(V0) decided by the specific volume (V ). µ0

P and µ0
T

represent derivatives of µ with respect to pressure
and temperature, respectively. Previously, it was
assumed that µ0

P is a constant and ⌘ varies with
the pressure. It was shown from Z-experiment that
µ0
P is not constant The following polynomial fit can

be used to reproduce the pressure dependent shear
modulus obtained from the Z-experiments.

µ = µ0 � µ0
T (T � 300) + ↵1P + ↵2P

2. (7)

Here, ↵1 and ↵2 are the fitting parameters. Figure 3
shows that empirical fit in Equation (7) accurately
reproduces measured µ versus pressure.

4. Ta model incorporating T , �̇ and P

Arrhenius law relates the rate of plastic deforma-
tion, �̇, to the activation enthalpy, �H, and tem-
perature, T , as follows:

�̇ = �̇0exp

✓
��H

kBT

◆
(8)

where �H is the activation enthalpy, kB is the
Boltzmann constant and �̇0 is a reference strain
rate. The activation enthalpy, �H, can be repre-
sented using the ratio of the resolved shear stress
(⌧⇤) and the Peierls stress (⌧p) as follows:

�H = �H0

✓
1�

✓
⌧⇤

⌧p

◆p◆q

(9)

Exp. (Brown et al., 2014)  
Empirical fit 

T = 300 K 

Figure 3: A plot of measured and fitted µ versus pressure.

where p and q are constants. Note that p = 0.5 and
q = 1 is the same form as the EI model and p = 1
and q = 2 is the LT model.

It is shown that ⌧p and �H0 are proportional to
shear modulus such that following relation can be
satisfied [17, 18]:

⌧p =
µ

µ0
⌧0p (10)

�H0 =
µ

µ0
�H0

0 . (11)

Using Equations (10) and (11), Equation (9) can
be rewritten as:

�H =
µ

µ0
�H0

0

✓
1�

✓
µ0

µ

⌧⇤

⌧0p

◆p◆q

. (12)

Here, µ0 is the reference shear modulus. Using
Equations (8) and (12), ⌧⇤ can be represented as
follows:

⌧⇤ =
µ

µ0
⌧0p

 
1�

✓
µ0

µ

kBT

�H0
0

ln
�̇0
�̇

◆1/q
!1/p

. (13)

Similarly, we can apply the same µ dependence
to the kink-pair model as follows:

⌧⇤EI =
µ

µ0
⌧0EI

✓
1� µ0

µ

T

T 0
c (�̇)

◆2

(14)

⌧⇤LT =
µ

µ0
⌧0LT

 
1�

✓
µ0

µ

T

T 0
c (�̇)

◆1/2
!
, (15)

3

Table 1: Material parameters for Equations (3)–(7) [16, 1, 2].

Equations Parameters Values

Eqns. (3)-(5)

�̇0 2.99⇥ 106 s�1

2Hk 0.85 eV

⌧0EI 406 MPa

⌧0LT 320 MPa

Eqn. (7)

µ0 69 GPa

µ0
T 0.009 GPa/K

↵1 7.9907⇥ 10�1 GPa�1

↵2 2.1292⇥ 10�3 GPa�2

follows [16]:

µ = µ0 � µ0
T (T � 300) + µ0

P

✓
P

⌘1/3

◆
. (6)

Here, µ0 is the shear modulus at the reference state
(T = 300 K and P = 0) and ⌘ = V0/V is the
compression, defined as the initial specific volume
(V0) decided by the specific volume (V ). µ0

P and µ0
T

represent derivatives of µ with respect to pressure
and temperature, respectively. Previously, it was
assumed that µ0

P is a constant and ⌘ varies with
the pressure. It was shown from Z-experiment that
µ0
P is not constant The following polynomial fit can

be used to reproduce the pressure dependent shear
modulus obtained from the Z-experiments.

µ = µ0 � µ0
T (T � 300) + ↵1P + ↵2P

2. (7)

Here, ↵1 and ↵2 are the fitting parameters. Figure 3
shows that empirical fit in Equation (7) accurately
reproduces measured µ versus pressure.

4. Ta model incorporating T , �̇ and P

Arrhenius law relates the rate of plastic deforma-
tion, �̇, to the activation enthalpy, �H, and tem-
perature, T , as follows:

�̇ = �̇0exp

✓
��H

kBT

◆
(8)

where �H is the activation enthalpy, kB is the
Boltzmann constant and �̇0 is a reference strain
rate. The activation enthalpy, �H, can be repre-
sented using the ratio of the resolved shear stress
(⌧⇤) and the Peierls stress (⌧p) as follows:

�H = �H0

✓
1�

✓
⌧⇤

⌧p

◆p◆q

(9)

Exp. (Brown et al., 2014)  
Empirical fit 

T = 300 K 

Figure 3: A plot of measured and fitted µ versus pressure.

where p and q are constants. Note that p = 0.5 and
q = 1 is the same form as the EI model and p = 1
and q = 2 is the LT model.

It is shown that ⌧p and �H0 are proportional to
shear modulus such that following relation can be
satisfied [17, 18]:

⌧p =
µ

µ0
⌧0p (10)

�H0 =
µ

µ0
�H0

0 . (11)

Using Equations (10) and (11), Equation (9) can
be rewritten as:

�H =
µ

µ0
�H0

0

✓
1�

✓
µ0

µ

⌧⇤

⌧0p

◆p◆q

. (12)

Here, µ0 is the reference shear modulus. Using
Equations (8) and (12), ⌧⇤ can be represented as
follows:

⌧⇤ =
µ

µ0
⌧0p

 
1�

✓
µ0

µ

kBT

�H0
0

ln
�̇0
�̇

◆1/q
!1/p

. (13)

Similarly, we can apply the same µ dependence
to the kink-pair model as follows:

⌧⇤EI =
µ

µ0
⌧0EI

✓
1� µ0

µ

T

T 0
c (�̇)

◆2

(14)

⌧⇤LT =
µ

µ0
⌧0LT

 
1�

✓
µ0

µ

T

T 0
c (�̇)

◆1/2
!
, (15)

3

 τ T , γ( ) = τ * T , γ( ) +τ obs
Thermal Athermal 

In FCC metals,  

In BCC metals,   

τ * ≈ 0
τ * >> 0 T << Tc( )

Temperature	  and	  strain	  rate	  dependence	   Pressure	  dependence	  

Ta crystal plasticity for low-rate strength model 
Hojun	  Lim	  
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Exp. (Brown et al., 2014) 
SG model 
PTW model 
SGL model 
LM model 
Current model 

Model prediction 
Hoge and Mukherjee (1977) 
Adams and Iannucci (1961) 
Lim et al. (2015) 
Chen and Grain (1996) 
Voyiadjis and Abed (2006) 
Park et al. (2011) 

Model prediction 
Hoge and Mukherjee (1977) 
Park et al. (2011) 

 !ε = 10-4  s-1 

where

T 0
c =

2H0
k

kB ln (�̇0/�̇)
. (16)

Here, T 0
c and 2H0

k are the critical temperature and
the kink activation enthalpy at P=0, respectively.

In order to convert shear stress of a single crystal
resolved onto active slip system to a tensile stress of
a polycrystal, the following relation can be adopted.

� = M̄⌧. (17)

Here, M̄ is the average Taylor factor that represents
the ratio between the macroscopic stress and the re-
solved shear stress. For BCC polycrystals, M value
ranges from 2.733 to 3.067, depending on the choice
of the slip mode. For example, M̄ value decrease
from 3.067 for {110} h111i slip system to 2.733 for
a pencil glide which assumes that the slip occurs
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•  We’ve	  studied	  dynamic	  ramp	  wave	  response	  in	  nanograin	  
polycrystal	  tantalum	  at	  1011	  to	  108	  1/s	  strain	  rates	  with	  
molecular	  dynamics	  and	  ramp	  profile	  scaling	  analysis.	  

•  Reasonable	  agreement	  in	  stress-‐strain	  response	  with	  lower-‐
rate	  experiments	  (Davis,	  et	  al.)	  

•  Lower	  strain	  rate	  brings	  be%er	  comparison,	  especially	  at	  strain	  below	  0.2	  
•  Over-‐represented	  elas?c	  response	  produces	  a	  more	  robust	  precursor	  

which	  may	  drive	  up	  longitudinal	  stress	  at	  high	  strains.	  

•  At	  pressures	  below	  100	  GPa	  high	  strength	  is	  observed	  due	  to	  
nanograin	  suppression	  of	  disloca?ons	  (inverse	  Hall-‐Petch).	  

•  Above	  100	  GPa	  we	  show	  good	  agreement	  with	  high-‐pressure	  
and	  high	  strain-‐rate	  trends	  in	  the	  PTW	  model.	  

Summary and conclusions 
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175 m/s 

Ta 

4340 steel 

38.1 mm 

7.6 mm 

•  ALEGRA	  solid	  dynamics	  code	  (Sandia)	  
•  Kerley	  Mie-‐Grüneisen	  equa?on	  of	  state	  
•  Strength	  models:	  

Exp.*	   Sim.	  

Taylor	  cylinder	  impact	  test	  

Deformed	  geometry	  

*	  Maudline	  et	  al.,	  IJP	  (1999)	  

-‐  Kink-‐pair	  (KP)	  model	  
-‐  Johnson-‐Cook	  (JC)	  model	  	  
-‐  Zerilli-‐Armstrong	  (ZA)	  model	  

High-rate dynamic simulations 


