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Polymer Nano Composites: Integration of Nano
Properties in Organics with Polymer Mechanical
Properties
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Nanoparticles (NPs) in Polymer Matrix
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» Dynamics of linear polymers
» Nanoparticles in linear polymers  7}iik T
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Computational Challenge: Accessing Long Time Scales




The Polymer

 Polymers are simultaneously hard and soft
—Unique Viscoelastic Behavior

» Motion of a polymer
chain Is subject to
topological constraints




Polymer Characteristic Length Scales

« Simple Liquids
-D~M1, n~M
» Short Polymer Chains (M < M,)

— Longest relaxation time tz ~ M?
— Intermediate t¥2 time regime in mean square displacement

~-D~M1 n~M
- Long Polymer Chains (M >M,) - Reptation
D ~ M-
n~ M
Td ~ M3

Characteristic signature of
reptation — intermediate
tY4 regime




Computational Challenges in Polymers

« Longest relaxation time T~ N3

e Chains are Gaussian coils — R ~ N1/2

— Number of chains must increase as R3 ~ N32so polymer chains
do not to see themselves through periodic boundary conditions

 Double chain length — cpu required increases by at least a

factor of 24>~ 23
— 1-2 month simulation becomes 2-4 years

* Number of processors limited: ~500-1000
particles/processor

* Imagine adding the NPs........




Polymer: Bead-Spring Model

» Short range - excluded volume
Interaction
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» Bonded interaction - FENE spring
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k=30¢/6?, R,=1.50

 Energy barrier prohibits chains from cutting through each other
— topology conserved
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Nanoparticles in Polymers
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» Weakly interacting mixtures of nanoparticles (NPs)
In linear (N=10-400) and ring (N=800) polymer melts
* NPs of diameter o, are well dispersed

LAMMPS: neighbor skin multi
comm_modify mode multi




Motion of Unentangled Polymer
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» Once polymer move their own size, unentangled polymers
move like simple liquids




State of the Art: Motion of Entangled Polymer
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« tI/4 motion is clearly seen for inner monomers
« Second tY2 region still unresolved



Nanoparticles in Polymer Nanocomposite

« Stokes-Einstein relates particle diffusion to
viscosity of media

D = kT/fmmop, =4,6 depending on slip

* What is the relevant viscosity?
Macroscopic viscosity
Local viscosity ~ oyp

* How does presence of NP affect motion of the
polymer?




Small NPs in Polymer Nanocomposite

Theoretical Prediction

« Effective viscosity corresponds to a section of the chain
with 62\p = Nypo?

« Stokes-Einstein with the Rouse viscosity 1= 1;Nyp
gives Dypo3\p CONStant
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Small NP mobility:
- well described by

o98—  predication
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N/op Kalathi et al. PRL 2014




Large NPs in Polymer Nanocomposite
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Polymer radius of gyration (nm)

Viscosity of Polymer Nanocomposites
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« Small, neutral NPs act akin to
plasticizers
-reduce the viscosity of
polymer melt
» Effect persists for NPs whose
sizes are as large as chain size or
entanglement mesh size
e Increasing polymer-NP
Interactions reduces plasticizer
effect

Tuteja et al., Macromolecules 38, 8000 (2005)

Kalathi, PRL 109, 198301 (2012)




Polymer Nanocomposites:
Correlate microscopic dynamics
with macroscopic response

o Nanoparticle Mobility affected by Polymer

J
e
Lt

W PN

o Polymer Mobility affected by Nanoparticles
Reduce number of effective entanglemen

* NPs increase or decrease viscosity,
depending on their size, interactions




Topology Effects: Ring Polymers

* Long linear polymers entangle and are forced to
move (‘reptate’) along their contours

 Branched polymers relax via a hierarchy of modes
from dangling ends moving inward

*Mystery: How do ring polymers relax without
beginning or end?
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Conformation of Ring Polymers

T
Rings (N = 1600)

 Rings more compact, less entangled than linear chains
- Radius of Gyration R ? ~ N2 for rings
~N for linear

J. Halverson et al. J. Chem. Phys. 134, 204904 (2011)



MSD

Mean-Squared Displacement of NPs

NP/Ring
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T. Ge et al, in prep (2015)

e t <t,, sub-diffusive
motion due to coupling
with dynamics of the
subsections of polymer
chains for both
linear/ring

* t >t,, MSD different
for linear/ring
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Effects of NPs Size

NP/Ring
NP/Linear

d=50 d=8c
d=100 d=120

N=800

T. Ge et al, in prep (2015)

Nanoparticle

Trapped by the
entanglement mesh in
linear polymers
Shorter subdiffusive
regime in rings

No entanglement mesh




Fickian Diffusion of Nanoparticles
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» Crossover occurs as NP motion couples with coherent motion
of chain subsections of size R~ oy

* Rings: D ~ opp3?

e Linear: D~ op*°

» Crossover to Stokes-Einstein c,,>20c




Highlights

Small nanoparticles:

— Diluent, decrease viscosity

— Relaxation times and their diffusivities are completely
described by the local, Rouse dynamics of the polymer

Nanoparticles ~ Mesh size
— Significantly slowed by chain entanglements, and is not
describable by the Stokes-Einstein relationship

NPs always reduce the number of entanglements

Subdiffusive regime suppressed in ring melts
compared to linear
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