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Objectives

The goal of this study is to examine the effect of native-oxide
layers on the mechanical properties of ultra-thin-films:
• Evaluate changes in modulus and yield stress.
• View structural and mechanistic changes in yielding.
• Apply thermodynamic yielding model to the simulation.

Introduction

Metal-oxide layers are likely to be present on metallic nano-
structures due to either environmental exposure during use, or
high temperature processing techniques, such as annealing. It
is well known that nano-structured metals have vastly differ-
ent mechanical properties from bulk metals; however, difficulties
in modeling the transition between metallic and ionic bonding
have prevented the computational investigation of the effects of
oxide surface layers. Here we use newly developed potentials
(COMB3) [1] to perform fully reactive molecular dynamics sim-
ulations which elucidate the effects that metal-oxide layers have
on a copper nano-film’s mechanical properties.

Yielding Features

Figure 1: Initial defect colored by
centrosymmetry.

Figure 2: FCC reorientation loop
with HCP stacking faults (red).

Figure 3: Top view of defect across
thickness.

Figure 4: BCC (blue) transforma-
tion in the oxide simulation.

Oxide-Layer Structure

Figure 5: Close up of native oxide layer.
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Figure 6: Charge distributions for oxide layers.
Figure 7: Close up of thick oxide layer.

Oxide Type Stoichiometry (Cu:O) Layer Thickness (Å) Cu-O Bond Density (bonds
Å3 ) Density ( u

Å3)
Native-Oxide (2280 O) 0.85:1.0 7.3 0.141 3.30
Native-Oxide (960 O) 1.30:1.0 6.0 0.120 3.33
Thick-Oxide Layer 1.20:1.0 13.7 0.207 3.83
Bulk CuO 1.0:1.0 – 0.226 3.82

Methodology

Native layers were grown at 300K by exposing bare copper films
to a high oxygen content atmosphere. The thick oxide layers
sample was created by placing oxygen terminated CuO unit cells
on the copper thin-film surface. Uniaxial tensile tests using cop-
per nano-films with a thickness of 64 Å were simulated while
varying the following parameters:

• Temperature (5K, 75K, 150K, 225K, 300K)
• Strain Rate (0.1%/ps, 0.05%/ps, 0.025%/ps)
• Oxide layer type (none, 5 Å, 15 Å)

The simulations were equilibrated, with a 1 fs timestep, for 150 ps
in an NPT ensemble then strained under an NVT ensemble with
a Nose-Hoover thermostat. Strain occured via 0.25% increments,
with 2500, 5000, or 10000 steps of equilibration between each
straining.

Model Description

A COMB3 [1] reactive potential was used to accommodate the
transition between ionic and metallic bonding. It is based on a
bond order/charge dependent term,
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Equilibration is achieved through charge dynamics that equalize
electronegativity in the system.

Simulation Yielding Results
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Figure 8: Yield stress and strain results.
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Figure 9: Binned atomic displacements
at 1.3 % strain.
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Figure 10: Oxide free thin-film structural
progression after yield. (green=BCC,
red=HCP)
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Figure 11: Thick oxide layer progression
after yielding. (green=BCC, red=HCP)

Modulus Results
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Figure 12: Rolling modulus results at 1K and 300K for thin-films, with a re-
gression region of 1%.

Conclusions

These data represent a benchmark for further COMBmechanical
testing:
• Oxide structure strongly effects the composite modulus,
increasing the modulus at low strain and temperature values,
while softening at higher temperatures.

• COMB potentials predict FCC [001]->[111] transitions as a
yielding mechanism. Likely due to the higher generalized
stacking fault energy with COMB potentials.

• Oxide layers squeeze the inner thin-film causing a
FCC->BCC transition while under tension.

• Reorganization events within the oxide films nucleate defects,
leading to brittle failure.
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