

Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral Interactions

Craig M. Tenney and Randall T. Cygan

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND 2013-6721P

Carbon capture and geological storage Big Picture

- 1. Capture CO₂
- 2. Inject it deep underground
- 3. Hope it stays there

Field-scale modeling

Multiscale simulation

ia nal

Geological carbon storage Up Close

reservoir rock

cap rock

Source: Cooperative Research Centre for Greenhouse Gas Technologies, http://www.co2crc.com.au/

Source: Hongkyu Yoon (SNL)

Sub-pore scale

- interfacial tension γ_{12}
 - surface free energy
- contact angle $\theta_{\rm C}$ – indication of wettability

 $\gamma_{\rm S1} - \gamma_{\rm S2} = \gamma_{12} \cos \theta_{\rm C}$

Source: Kuldeep Chaudhary (UT Austin)

Pore- and field-scale

• capillary pressure $p_{\rm c}$

 overpressure required to displace current fluid with new fluid

$$p_c = \frac{2\gamma_{12}\cos\theta_{\rm C}}{r}$$

- relative permeability
 - fractional permeability of a fluid in the presence of other fluid(s)

Molecular simulation of aqueous and supercritical CO₂ nanodroplets

kaolinite

gibbsite surface (hydrophilic) \rightarrow H siloxane surface (hydrophobic) \rightarrow 0

Simulation details

- •(20 x 20 x 17) nm
- 3 kaolinite layers (bottom two fixed)
- •330K, 20MPa
- •10-15 ns

- CO_2 in H_2O - 600k atoms
- H_2O in CO_2 - 300k atoms
- brine systems
 - -0.7 M NaCl
 - -0.2 M CaCl₂

front view

oblique view

front view

oblique view

gibbsite (hydrophilic) surface CO₂ in H₂O – initial configuration

front view

oblique view

gibbsite (hydrophilic) surface CO₂ in H₂O – final configuration

gibbsite (hydrophilic) surface CO₂ in H₂O – final configuration

gibbsite (hydrophilic) surface CO₂ in 0.7M NaCI – final configuration

gibbsite (hydrophilic) surface CO₂ in 0.7M NaCI – final configuration

gibbsite (hydrophilic) surface CO₂ in 0.7M NaCI – final configuration

gibbsite (hydrophilic) surface CO₂ in 0.2M CaCl₂ – final configuration

gibbsite (hydrophilic) surface CO₂ in 0.2M CaCl₂ – final configuration

gibbsite (hydrophilic) surface CO₂ in 0.2M CaCl₂ – final configuration

- Simulation shows realistic behavior for CO₂, H₂O, and ions on hydrophilic and hydrophobic basal surfaces of kaolinite.
- Possible future application: rational design of surfactants, coatings, enhanced oil or gas recovery

Acknowledgments

- Simulation development aided by discussions with
 - Louise Criscenti (SNL)
 - Ian Bourg (LBNL)
- This research is funded by the Center for Frontiers of Subsurface Energy Security (CFSES), a U.S. Department of Energy Office of Basic Energy Sciences Energy Frontier Research Center, under Contract No. DE-SC0001114.

supplementary slides

siloxane (hydrophobic) surface CO₂ in H₂O

initial

final

top view

front view

siloxane (hydrophobic) surface CO_2 in H_2O – final configuration

siloxane (hydrophobic) surface CO_2 in H_2O – final configuration

siloxane surface – H_2O in CO_2

siloxane surface – H_2O in CO_2

CO₂ and H₂O in mica slit pores initial configuration

CO₂ and H₂O in mica slit pores final configurations

CO₂ and H₂O in mica slit pores final configurations

CO_2 and H_2O in mica slit pores CO_2 density

CO_2 and H_2O in mica slit pores H_2O density

CO₂ and H₂O in mica slit pores K⁺ density

Summary

- kaolinite hydrophilic surface
 - layers of water (and ions) completely displace CO₂
- kaolinite hydrophobic surface
 - strong CO₂ wetting in presence of water and brine
 - weak water and brine wetting in presence of CO₂
- mica slit pores
 - unconfined CO₂ is completely displaced by welldeveloped water layers
 - strongly confined CO₂ displaces diffuse water layers, slightly altering contact angle

