Interatomic Potentials in LAMMPS

Aidan P. Thompson Sandia National Laboratories

2nd LAMMPS Users Workshop August 2011, Albuquerque, New Mexico

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Recently Added Potentials

• COMB potential (Generation 2)

Tzu-Ray Shan (U Florida), talk on Tues PM metal and semiconductors and their oxides

• Embedded ion method potentials (EIM)

Xiaowang Zhou (Sandia), ionic compounds combo of Li, Na, K, Rb, Cs, F, Cl, Br, and I

• C++ version of ReaxFF

Metin Aktulga (LBNL), talk on Wed PM can be faster than Fortran version by 2-3x

• Electron force field (eFF)

Andres Jaramillo (Caltech), explicit electron dynamics in extreme conditions

Recently Added Potentials

AIREBO potential bug fixes

Marcel Fallet & Steve Stuart (Clemson), one more bugfix, upgrade is imminent

• Mishin ADP potential

Chris Weinberger (Sandia) & Chandra Veer Singh (Cornell) angular-dependent EAM for metals and alloys

Dreiding potential

Tod Pascal (Caltech) hydrogen bonding for solvated biomolecules

• New Peridynamics potentials

Mike Parks & Stuart Silling (Sandia), talk on Wed PM fracture at the meso and continuum scales

Upcoming Potentials

• Core/shell potential

Mike Chandross (Sandia), zero-order model for polarization, uranium and other nuclear fuel materials

• COMB potential (Generation 3)

Tzu-Ray Shan (U Florida), more materials with polarization effects

MGPT potential

from John Moriarty & Jaime Marian (LLNL), tantalum and other transition metals

• BOP potential

Xiaowang Zhou and Don Ward (Sandia) High-accuracy potential for semiconductors

LAMMPS Potential benchmarks

Potential	System	Atoms	Timestep	CPU	LJ Ratio
Granular	chute flow	32000	0.0001 tau	5.08e-7	$0.34 \mathrm{x}$
FENE bead/spring	polymer melt	32000	0.012 tau	5.32e-7	0.36x
Lennard-Jones	LJ liquid	32000	0.005 tau	1.48e-6	$1.0 \mathrm{x}$
DPD	pure solvent	32000	$0.04 \mathrm{tau}$	2.16e-6	1.46x
EAM	bulk Cu	32000	5 fmsec	3.59e-6	2.4x
Tersoff	bulk Si	32000	1 fmsec	6.01e-6	4.1x
Stillinger-Weber	bulk Si	32000	1 fmsec	6.10e-6	4.1x
EIM	crystalline NaCl	32000	$0.5 \mathrm{fmsec}$	9.69e-6	6.5x
$\mathrm{SPC/E}$	liquid water	36000	2 fmsec	1.43e-5	9.7x
CHARMM + PPPM	solvated protein	32000	2 fmsec	2.01e-5	13.6x
MEAM	bulk Ni	32000	5 fmsec	2.31e-5	15.6x
Peridynamics	glass fracture	32000	22.2 nsec	2.42e-5	16.4x
Gay-Berne	ellipsoid mixture	32768	0.002 tau	4.09e-5	28.3x
AIREBO	polyethylene	32640	$0.5 \mathrm{fmsec}$	8.09e-5	54.7x
COMB	crystalline SiO2	32400	$0.2 \mathrm{fmsec}$	4.19e-4	284x
${ m eFF}$	${ m H}$ plasma	32000	$0.001 \mathrm{~fmsec}$	4.52e-4	306x
ReaxFF	PETN crystal	16240	$0.1 \ \mathrm{fmsec}$	4.99e-4	337x
$\mathrm{ReaxFF/C}$	PETN crystal	32480	$0.1 \ \mathrm{fmsec}$	2.73e-4	185x
VASP/small	water	192/512	$0.3 \mathrm{fmsec}$	26.2	17.7e6
VASP/medium	CO2	192/1024	$0.8 \mathrm{fmsec}$	252	170e6
VASP/large	Xe	432/3456	$2.0 \ \mathrm{fmsec}$	1344	908e6

Compute Cost of Interatomic Potentials Growing Exponentially

Compute cost of LAMMPS potentials versus publication date

Drivers

- Cycles are cheap
- Availability of quantum calculations (N < 100)
- Qualitative accuracy no longer enough

http://lammps.sandia.gov/bench.html#potentials

Challenges with Complex Potentials

• How to Implement in LAMMPS?

- Rewrite code from scratch (REBO)
- Integrate existing serial code (ReaxFF)

– Access via general API (KIM)

- How to Validate LAMMPS Version?
- How to Handle New Versions?

How to Fit Potentials to New Materials?

- Automated fitting procedures exist for certain classes of materials and potentials (EAM)
- More commonly, good fits can be obtained only by gurus (Baskes, van Duin)
- Combination of nonlinear optimization and physical intuition
- Increasing interest in automated machine-learning approaches
 - Splines
 - Genetic programs
 - Multi-objective optimization
 - Neural networks
 - Series expansions

GAP Approach for Interatomic Potentials

GAP: A systematic, informatics approach

- Based on QM and mathematics rather than empiricism.
- Local density around each atom expanded in 4D hyperspherical harmonics, analogous to Fourier series
- Atomic configurations described by bispectrum of lowest-order coefficients in series
- Preserves universal physical symmetries: invariance w.r.t. rotation, translation, permutation
- Gaussian process (GP) regression used to interpolate energy of QM configurations
- 100-1000x more expensive than MEAM
- Far cheaper than QM, linear scaling
- Can trade performance and accuracy

$$O(\mathbf{r}) = \sum_{j=0}^{\infty} \sum_{m',m=-j}^{j} c_{m',m}^{j} Y_{m',m}^{j} (\theta,\phi,\omega)$$

Diamond: Force errors for GAP fitted to DFT. Adding higher-order GAP coefficients systematically increases accuracy Bartok et al., *PRL* **104** 136403 (2010)

GAP Potential for Beryllium

Beryllium

Working with GAP developers, fitting directly to forces and energies from high-temperature DFT MD simulations of small systems (from Mike Desjarlais, 1640)

- Initial fit to:
 - ambient HCP
 - high-pressure BCC and liquid
- Accurately reproduced that data
- Problems with:
 - ambient elastic constants
 - high-pressure HCP
- Need to refit with more data