
Knowledgebase of Interatomic Models

Application Programming Interface
(KIM API)

This document describes how KIM Tests and Models written in
different languages work together. A unified interface, tuned for the
specific needs of atomistic simulations, is presented. This interface is
based on the concept of “descriptor files”. A descriptor file specifies
all variables and methods required for communication between a
particular Model and a Test. A “KIM API object” is created, based
on the descriptor files, that holds all arguments (variable/data and
method pointers) needed for Test/Model interaction. A complete
set of KIM API service routines are available for accessing the
various pointers in the KIM API object.

Valeriu Smirichinski, Ryan S. Elliott and Ellad B. Tadmor
Dept. of Aerospace Engineering and Mechanics, University of Minnesota

August 2011

1alpha version openkim-api-v0.1.0

KIM overview
– Barriers faced by molecular modelers
– Knowledgebase of Interatomic Models (KIM) is proposed to overcome the barriers
– KIM framework
– KIM repository: Models
– KIM repository: Tests
– KIM repository: KIM data

KIM API concept and implementation:
1. The KIM API facilitates communication between Models and Tests
2. The most challenging technical requirement is the need for multi-language support
3. The KIM API is based on exchanging pointers to data and methods
4. How can a Test know what type of input/output data is required by a Model?

We have solved this problem by introducing the KIM API descriptor file
5. The structure of a descriptor file
6. Handling of Neighbor lists and Boundary Conditions – NBC methods
7. Test/Model coupling: The Model’s initialization routine stores a pointer to the “compute”

routine in the KIM API object
8. Initialization of a KIM API object, setting and getting data-pointers can be done through

the KIM service routines
9. KIM installation: compilation, linking and running Tests

Contents

University of Minnesota
2

Appendix

1. Every variable that needs to be communicated between Tests and Models must be in the
descriptor file

2. The KIM API directory structure

3. Model and Test examples available in the current version of the KIM API

4. The KIM API object is an array of base data elements.
Each base data element can hold a pointer to any relevant data (scalar, array, method,
etc.)

Contents (2)

University of Minnesota
3

KIM overview

University of Minnesota
4

PIs
Ellad Tadmor (U. Minnesota)
Ryan Elliott (U. Minnesota)
James Sethna (Cornell)

Developers
Valeriu Smirichinski (U. Minnesota)
Daniel Karls (U. Minnesota)
Mihir Khadilkar (Cornell)
Alex Alemi (Cornell)
John Crow (Silicon Life Sciences)
Trevor Wenblom (Silicon Life Sciences)

KIM TEAM

University of Minnesota
5

Advisory Board
Graeme Ackland (U. Edinburgh)
Michael Baskes (LANL)
Chandler Becker (NIST)
Noam Bernstein (NRL)
Ioana Cozmuta (NASA)
Karsten Jacobsen (Tech. U. Den.)
Ronald Miller (Carleton)
John Moriarty (LLNL)
Sadasivan Shankar (Intel)
Adri van Duin (Penn State)
Gabriel Wainer (Carleton)

Molecular/atomistic simulations:

tests and models

University of Minnesota
6

Tests

Test :a specific computer program which, when

coupled with a suitable Model, calculates and returns

a specific Prediction about a particular Configuration

(or sequence of Configurations for dynamical

properties).

Models

Model : Computer implementation

representing a specific interaction between

atoms, e.g. an interatomic potential or force

field

Source: openkim.org

Types of molecular modelers

University of Minnesota
7

Developers

- Create new models

- Study materials physics and applications

- Create new knowledge

Very broadly speaking there are two types of molecular modelers:

Users

- Use models to study materials problems of

scientific/technological importance

- Build sophisticated simulations to extract

meaningful data

- Create new knowledge

Users

Developers

The difficulties faced by developers and users of interatomic
models include:

1. No easy access to an extensive list of reliable reference data
from experiments and first principles calculations for fitting.

2. No easy access to implementations of existing models with
known provenance and cross-language capability.

3. No standardized tests for evaluating properties of molecular
systems.

4. No framework for evaluating the precision and transferability
of models and therefore no rigorous guidelines for choosing
an appropriate model for a given application.

Barriers faced by molecular modelers

University of Minnesota
8

Knowledgebase of Interatomic Models (KIM) is

proposed to overcome the barriers

University of Minnesota
9

The Knowledgebase of Interatomic Models (KIM) project is based on a four-year

NSF cyber-enabled discovery and innovation (CDI) grant. The KIM project is

designed to overcome the barriers mentioned on the previous page. KIM has the

following main objectives:

• Development of an online open resource for standardized testing and long-term

warehousing of interatomic models (potentials and force fields) and data.

• Development of an application programming interface (API) standard for

atomistic simulations, which will allow any interatomic model to work seamlessly

with any atomistic simulation code.

• Fostering the development of a quantitative theory of transferability of

interatomic models to provide guidance for selecting application-appropriate

models based on rigorous criteria, and error bounds on results.

• Striving for the permanence of the KIM project, including development of a

sustainability plan, and establishment of a long-term home for its content.

More information on KIM is available at the project website: http://openKIM.org

http://openkim.org/

KIM framework

University of Minnesota
10

Repository Processing
pipeline

KIM

Web portal

External repositories

A web interface that will facilitate:

• user upload and download of Tests, Models
and Reference Data

• searching and querying the repository

• comparing and visualizing Predictions and
Reference Data

• recording user feedback (ranking and
discussion forums)

A user-extendible database of

• interatomic Models

• standardized Tests (simulation codes)

• Predictions (results from Model-Test
couplings)

• Reference Data (obtained from experiments
and first principles calculations)

Processing Pipeline:
An automatic system for generating Predictions due to
new Test or Model upload or changes:
• detect viable Test-Model couplings
• assign computational resources based on priority and
dependencies
• store results in Repository
• requires an application programming interface (API) to be
defined

KIM repository: Models

University of Minnesota
11

Models Tests Predictions Reference Data KIM API Models

Model: Computer implementation representing a specific interaction between atoms,

e.g. an interatomic potential or force field.

• Model Format

- Stand-alone Model (black box)

- Model Driver (e.g. Lennard-Jones)

+ Parameter Set (e.g. =10.4 meV, =0.34 nm)

• Every model will have a unique KIM ID for referencing in papers.

Lennard-Jones (pair)

• Ar parameterization

• ...

⠇

Morse (pair)

• Cu parameterization

• ...

⠇

Born-Mayer (ionic pair)

⠇

Stillinger-Weber (3-bdy)

• Si parameterization

• ...

⠇

MGPT (4-body)

• Mo parameterization

• Ta parameterization

• ...

⠇

CHARMM/AMBER

⠇

EAM/Finnis-Sinclair/glue

⠇

MEAM

⠇

Tersoff

⠇

EDIP

Brenner

⠇

Bond-order potentials

⠇

ReaxFF

⠇

GAP

⠇

KIM repository: Tests

University of Minnesota
12

Models Tests Predictions Reference Data KIM API Tests

Test: a specific computer program which when coupled with a suitable Model, possible including

additional input, calculates and returns a specific Prediction about a particular Configuration (or

sequence of Configurations for dynamical properties).

• Prediction of a Test will be a logical, scalar, tensor, graph, configuration or field, computed from

a Test-Model coupling

• Popular codes (ddcMD, DL_POLY, GROMACS, GULP, iMD, LAMMPS, NAMD, SPaSM, etc.)

can be included in a library of tools for writing Tests.

• Automatic test generation by linking to external repositories of first principles results.

Scalars

- lattice constants

- cohesive energy

- vacancy formation energy

- surface energy

- grain boundary energy

- vacancy migration barrier

- dislocation mobility

- peierls stress

- melting temperature

-...

Tensors

- stress

- elastic constants

-...

Configurations

- dislocation core structure

- surface structure

- grain boundary structure

- nanocluster structure

-...

Graph

- phonon spectrum

- cohesive energy vs volume

- energy along transition path

- radial distribution functions

-...

Fields

- simulated TEM hi-res image

- gamma surface

-…

KIM repository: KIM Data

University of Minnesota
13

Models Tests Predictions Reference Data KIM API Predictions Reference Data

Data in KIM can either be

‣ a Prediction computed from a Test-Model coupling, or

‣ Reference Data computed by first principles or measured experimentally.

• Standardization of Data
- Identified in terms of a set of “descriptors” drawn from a standardized “dictionary”

(similar to that used in the Protein Data Bank project)

- Descriptors will be automatically generated when possible (for example, the “Space Group”

descriptor will be automatically generated for a given crystal structure).

• Data classes
- Logical (true/false result for a test, e.g. a given crystal phase is stable)

- Scalar or Tensor (lattice constant, cohesive energy, elastic constants...)

- Graphs (transition pathway energy, phonon spectrum, ...)

- Configurations (relaxed defect core, surface structure, ...)

- Fields (simulated hires TEM image, ...)

• Quality assurance
- Acceptance of only “publication quality” data enforced by KIM Editor

- “Data Provenance”

KIM API concept and implementation

University of Minnesota
14

Test #n: using potential
for the given configuration
finds stresses
Requires: forces between each
pair of neighboring atoms…

The KIM API facilitates communication between

Models and Tests

1

University of Minnesota
15

Test #1: using model find min.
energy configuration…

Model #4: EAM potential with
tabulated embedding function

Calculates: forces between
each pair neighboring atoms
…

Model #1: Lennard-Jones
potential with cutoff….

Test calls the
Model---therefore
they should be
linked together as
one executable.

Input for Model

Results

Tests can be written in
different languages

Models can be written
in different languages

Users and developers will be able to download Tests and Models (from openkim.org) ,
then compile, link and run the resulting programs to produce new results.

? ? ? ? ? ? ?

Processing pipeline:
sequence of actions

• detect a viable Model/Test
coupling

• build (compile and link)
Tests against Model

• run probe-tests

• assign computational
resources

• run full-scale Test against
Model
• analyze results …
• store results in the
repository

The most challenging technical requirement is the

need for multi-language support

Need a simple interface : ideally just one argument per call

Source: KIM kickoff presentation

2

openKIM.org framework

Processing pipeline: an automatic system for
generating predictions when Tests or Models
are uploaded or changed.

Requirements:

•Multilanguage support
(C, C++, F77, FORTRAN
90, Python …)

• A variety of data
structures need to be
accommodated: scalars,
multidimensional arrays,
variable size arrays, etc..

• Speed & performance
are very important

• Standardized API,
version tracking, etc…

?

University of Minnesota
16

? ? ? ? ? ? ?Data standard should accommodate every
possible data set required for the model

The KIM API is based on exchanging pointers to

data and methods

3

KIM

API

Many
languages

link

Data

standard

Method
flexibility

and speed

Model
(server)

Test
(client)

Pointer to
standard
data

Pointer

Pointer

Single executable

University of Minnesota
17

1. Data and method pointers are packed in
one object. The Interface consists of
exchanging one pointer to the KIM API
object between a Test and a Model

2. All languages naturally support pointers:
•FORTRAN (cray or 2003 standard)
•C/C++
• Java
•Python

Concept Schematic of implementation

Using C-style pointer in Fortran
3.1

University of Minnesota
18

In order to implement the KIM API concept in a cross-language environment, all
languages have to work with C-style pointers.

FORTRAN 77 and Fortran 90/95 do not support C-style pointers directly, however
essentially all compilers support the `cray pointers' extension which provides this capability.
A cray pointer is an integer that can store a memory address. An example below shows the
general syntax and usage of a cray pointer in Fortran compared with C.

…

double precision :: y=10.0d0

double precision :: x

pointer (px,x)

…

px = loc(y)

print*,”x=“,x

…

…

double y=10.0;

double *x;

x = &y;

printf(“*x=%f \n”, *x);

…

Keyword pointer, followed
by two arguments

px - is a pointer (analog
double *x in C)
x - is a pointee

As soon as px holds an
address, access to that
address is done by pointee x

FORTRAN code C code

How can a Test know what type of input/output data is required by a Model?

We have solved this problem by introducing the KIM API descriptor file

4

University of Minnesota
19

##

MODEL_NAME := model_Ne_P_MLJ_NEIGH_PURE_H

SystemOfUnitsFix := fixed

##

SUPPORTED_ATOM/PARTICLES_TYPES:

Symbol/name Type code

Ne spec 1

...

MODEL_INPUT:

Name Type Unit SystemU/Scale Shape Requirements

numberOfAtoms integer*8 none none []

numberAtomTypes integer none none []

atomTypes integer none none [numberOfAtoms]

...

model_Ne_P_MLJ_NEIGH_PURE_H.kim

Note: full .kim file shown here can be found in MODELs/model_Ne_P_MLJ_NEIGH_PURE_H/

KIM API descriptor file defines all variables that the model needs for computation including input and
output variables. Also on the test side, the .kim file defines what the Test can provide as input for the Model and
what it expects from the Model as a result.

Tests and Models expose the required input/output variables that
will be communicated using the KIM API

Structure of descriptor file

5

University of Minnesota
20

Section lines

Brief description of Section
lines

SUPPORTED_ATOM/PARTICLES_TYPES:

CONVENTIONS:

MODEL_INPUT:

MODEL_OUTPUT:

MODEL_PARAMETERS:

These lines identify logically distinct sections within

the KIM descriptor file.

All lines following a Section line, up to the next

Section line or end of the file, will be assigned to the

indicated section.

These sections may occur in any order within a KIM

descriptor file, however the order given here is

recommended. A section line may only occur once within a KIM

descriptor file.

Data lines

* Species Data lines

* Dummy Data lines

* Argument Data lines

These lines are used to specify the information that a

Model (Test) will provide to and require from a Test

(Model), as well as the conventions that the Model(Test)

uses.

* Species Data lines – allow for the definition of atomic

species by providing a symbol and an integer code. These

lines are located in section SUPPORTED_ATOM/PARTICLES_TYPES.

* Dummy Data lines - this line type defines a convention

that can be used to ensure that Models and Tests are able to

work together, and should only be used within the

CONVENTIONS section of the KIM descriptor file.

* Argument Data lines – the main KIM descriptor file line

format, used within the MODEL_INPUT, MODEL_OUTPUT, and

MODEL_PARAMETERS sections.

Brief description of Data lines

Model/Test name and system of units lines

MODEL_NAME:=model_Ar_P_Morse

SystemOfUnitsFix := fixed

MODEL_NAME := model_Ar_P_MLJ_F90

SystemOfUnitsFix := fixed

….

compute method none none []

MODEL_OUTPUT:

Name Type Unit SystemU/Scale Shape requirements

energy real*8 energy standard []

energyPerAtom real*8 energy standard [numberOfAtoms] optional

….

Each argument line in the descriptor file describes a

variable and its properties

5.1

University of Minnesota
21

MODELs/model_Ar_P_MLJ_F90.kim

The “requirements” field is
only used in Model descriptor
files. An empty field indicates
that the variable is required.
A value of “optional”
indicates that the associated
data will be computed only if
the variable is in the Test’s
descriptor file and if the Test
explicitly requests it.

Method means a
subroutine or function
pointer

Physical
dimensions

Type of data in computer
representation

The name of a variable is
its “key word”. By using
key words, the KIM service
routines can pack/unpack
data pointers from the KIM
API object. Key words are
standardized as part of the
KIM API.

The shape of a variable describes its array
properties. It specifies the number and size
(range) of indices. For example, [] means a
scalar (zero-dimensional array),
[numberOfAtoms] means a one-dimensional
array and [numberOfAtoms,3] means a two-
dimensional array of size numberOfAtoms x 3.

System of units:
standard, SI, none

Note: detailed description of all Types value , Unit, SystemU/Scale can be found in the file KIM_API/standard.kim

All characters after a ‘#’ are ignored
(a comment field)

Specifying atom types – species data lines

5.2

University of Minnesota
22

...

###

SUPPORTED_ATOM/PARTICLES_TYPES:

Symbol/name Type code

Ar spec 1

###

...

Species data lines define the atom/particle types

supported by the Test/Model and should only be used

within the SUPPORTED_ATOM/PARTICLES_TYPES

section of the KIM descriptor file. Each line consists of

three white-space separated (case sensitive) strings

The three strings are as follows:

code: This is the integer that the Model uses internally

to identify the atom/particle type. The value specified

by a Test is ignored.

Type: This must be `spec'.

Name: This string gives a unique name to the

atom/particle type. This name is checked against the

standard list in `standard.kim'.

The KIM_API_get_listAtomTypes() service routine allows one to obtain a list of all atom species used by the model

during runtime. Also the KIM_API_get_atypeCode() service routine allows one to get the atom species integer code

(see KIMserviceDescription.txt).

MODELs/model_Ar_P_MLJ_F90.kim

In order to define “conventions” of test/model

behavior, dummy data lines are reserved

University of Minnesota
23

##

CONVENTIONS:

Name Type

OneBasedLists dummy

Neigh_IterAccess dummy

Neigh_LocaAccess dummy

NEIGH-RVEC-F dummy

NEIGH-PURE-H dummy

...

A dummy data line defines a convention (or parameter),

that can be used to ensure that Models and Tests are

able to work together, and should only be used within

the CONVENTIONS section of the KIM descriptor file.

The line consists of two white-space separated (case

sensitive) strings. The two strings, in order, are as

follows:

Name: This string gives a unique name to the

convention. This name is checked against the

standard list in `standard.kim„

Type: This must be `dummy'

KIM_API_allocate() has no effect on “dummy “ type variables, because they are not “data pointer holders“.

For a detailed description of all dummy lines see the file KIM_API/standard.kim. Also see template files in DOCs/TEMPLATEs/.

5.3

DOCs/TEMPLATEs/model_El_P_Template.f.kim

Parameter variables are used to publish/access

internal parameters of a Model

University of Minnesota
24

MODEL_PARAMETERS:

Name Type Unit SystemU/Scale Shape requirements

PARAM_FREE_sigma real*8 length standard []

PARAM_FREE_epsilon real*8 energy standard []

PARAM_FIXED_cutsq real*8 area standard []

...

The format for parameter variables in a KIM descriptor file is the same as that for argument data types.

Two types of model parameters are allowed

1) PARAM_FIXED_XXXXXX - these should not be changed by the Test

2) PARAM_FREE_XXXXXX - these may be changed by the Test (which must then call the

Model's reinit() function to inform the model that its parameters have changed)

KIM_API_get_listParams() service routine will return a list of all parameters in the object during

runtime (as an array of text strings).

KIM_API_get_listFreeParams() service routine will return a list of FREE parameters and

KIM_API_get_listFixedParams() will return a list of FIXED parameters (see

KIMserviceDescription.txt)

Names of parameter variables are not checked against standard.kim

5.4

model_Ar_P_MLJ_CLUSTER/model_Ar_P_MLJ_CLUSTER.kim

Handling of Neighbor lists and

Boundary Conditions – NBC methods

University of Minnesota
25

Neighbor list
?

MI-ORTHO
PBC ?

Relative Pos.
Vectors Rij ?

YesNo

CLUSTER MI-OPBC NEIGH-RVEC NEIGH-PURE

NEIGH-PURE-H

NEIGH-PURE-F
Model needs

neighbor lists

NEIGH-RVEC-F
Model needs

neighbor list and

relative position

vectors Rij=xj-xi

MI-OPBC-H

MI-OPBC-F
Minimum image

orthogonal periodic

boundary conditions:

model needs neighbor

lists and box side

lengths

Plain vanilla method:

Model needs only

coordinates

Yes No

No Yes

Note: NBC stands for Neighbor lists and Boundary Conditions

6

Descriptions of the NBC methods

University of Minnesota
26

CLUSTER:

Receives the number of atoms and coordinates without additional information (such as neighbor

lists or other boundary condition specifiers) and computes requested quantities under the

assumption that the atoms form an isolated cluster. For example, if energy and forces are

requested, it will compute the total energy of all the atoms based on the supplied atom

coordinates and the derivative of the total energy with respect to the positions of the atoms.

MI-OPBC-[F|H]:
Receives the number of atoms and coordinates, the side lengths for the periodic orthogonal box

and a neighbor list as detailed below. Assumes all atoms lie inside the periodic box. Side lengths

of box must be at least twice the cutoff range. Computes the requested quantities under the

assumption that the atoms are subjected to minimum image, orthogonal, periodic boundary

conditions.

Neighbor list requirements for MI-OPBC-[F|H]:

1. The minimum image convention is applied during construction of the neighbor list consistent

with the orthogonal box size.

2. The neighbor list can be supplied in either full or half mode.

Full neighbor list: All neighbors of an atom are stored

Half neighbor list: For an atom i only the neighbors j>i are stored.

Calculated quantities for both –H and –F modes should be equivalent to those obtained were the

model to compute its own neighbor list using the provided orthogonal periodic box side

lengths.

6.1

Descriptions of the NBC methods (2)

University of Minnesota
27

NEIGH-PURE-[F|H]:

Receives the number of atoms, coordinates and a full or half neighbor list. The neighbor list

defines the environment of each atom, from which the atom‟s energy is defined. The model

computes the requested quantities using the supplied information. For example, if energy and

forces are requested, it will compute the total energy of all the atoms based on their neighbor lists

and the derivative of the total energy with respect to the positions of the atoms. This method can

be used with codes that use ghost atoms to apply boundary conditions. The ghost atoms are

treated as regular atoms by the model, and it is up to the calling code to discard some information

such as the forces on the ghost atoms and to compute the appropriate total energy from per-atom

energies of the physical atoms, or to use a modified neighbor list to obtain the desired values.

NEIGH-RVEC-F:

Receives the number of atoms and coordinates, a full neighbor list and the relative position

vectors Rij (Rij = xj-xi). The neighbor list and Rij vectors define the environment of each atom, from

which the atom‟s energy is defined. The model computes the requested quantities using the

supplied information. For example, if energy and forces are requested, it will compute the total

energy of all the atoms based on their neighbor lists and relative position vectors and the

derivative of the total energy with respect to the positions of the atoms. This method enables the

application of general periodic boundary conditions, including multiple images. (This approach

can fail with half neighbor lists and therefore the –H variant of the method does not exist.) A

possible future extension to this method is to allow the Test to provide a ForceTransformation()

function for each neighbor, which would enable the application of complex boundary conditions

such as torsion and objective boundary conditions.

6.2

Example of using NBC methods in KIM file

University of Minnesota
28

…

CONVENTIONS:

Name Type

OneBasedLists dummy

NEIGH-RVEC-F

NEIGH-PURE-H dummy

NEIGH-PURE-F dummy

...

CLUSTER dummy

...

The template example in model_El_P_Template.f.kim

is designed to work with five different NBC methods.

If the Test can also work with multiple NBC methods and

there are several matches, the first matched method listed

in the Model‟s KIM file will have precedence.

The KIM_API_init () routine will check that all needed lines

for the chosen method are in KIM descriptor file.

NBC Methods

6.3

DOCs/TEMPLATEs/model_El_P_Template.f.kim

Neighbor list access methods:

all related lines in KIM descriptor files

University of Minnesota
29

…

CONVENTIONS:

Name Type

…

ZeroBasedLists dummy # presence of this line indicates that indexes

for atoms are from 0 to numberOfAtoms-1 (C-style)

OneBasedLists dummy # presence of this line indicates that indexes for

atoms are from 1 to numberOfAtoms (Fortran-style)

Neigh_IterAccess dummy # works with iterator mode

Neigh_LocaAccess dummy # works with locator mode

Neigh_BothAccess dummy # needs both locator and iterator modes

MI-OPBC-H dummy

MI-OPBC-F dummy

NEIGH-RVEC-F dummy

NEIGH-PURE-H dummy

NEIGH-PURE-F dummy

MODEL_INPUT:

Name Type Unit SystemU/Scale Shape requirements

get_full_neigh method none none []

get_half_neigh method none none []

neighObject pointer none none []

boxlength real*8 length unspecified [3]

standard.kim (only related to Neighbor list access are shown here)

neighObject stores completely encapsulated neighbor list object
Access to the object is done through methods get_full_neigh or
get_half_neigh . The neighbor list object and the method to
access it are supplied by the Test.

6.4

Interface to methods:

get_half_neigh & get_full_neigh

University of Minnesota
30

integer function get_half_neigh(pkim,mode,request,atom,numnei,pnei1atom,pRij)

implicit none

integer(kind=kim_intptr), intent(in) :: pkim

integer, intent(in) :: mode

integer, intent(in) :: request

integer, intent(out) :: atom

integer, intent(out) :: numnei

integer, intent(out) :: pnei1atom

integer, :: nei1atom(1); pointer(pnei1atom,nei1atom)

double precision, intent(out) :: pRij

double precision, :: Rij(3,*); pointer(pRij,Rij)

end function get_half_neigh

get_half_neigh and get _full_neigh functions

both have the same interface

here :

mode - operate in iterator or locator

mode

mode = 0 : iterator mode

mode = 1 : locator mode

request - Requested operation

If mode = 0

request = 0 : reset iterator

request = 1 : increment iterator

If mode = 1

request = # : number of the atom

whose neighbor list

is requested

int get_half_neigh(void ** pkim, int * mode, int * request, int * atom,

int * numnei, int ** pnei1atom, double ** pRij) ;

FORTRAN style

C style

atom - the number of the atom whose neighbor list is returned

numnei - number of neighbors returned

nei1atom - integer array of neighbors of an atom which will point to

the list of neighbors on exit.

Rij - array of relative position vectors of the neighbors of an

atom (including boundary conditions if applied) if they

have been computed (NBC scenario NEIGH-RVEC-F

only). Has NULL value otherwise (all other NBC

scenarios).

The return value depends on the results of execution:

2 -- iterator has been successfully initialized

1 -- successful operation

0 -- iterator has been incremented past end of list

-1 -- or any negative value means unsuccessful

operation (see KIM_API/KIMserviceDescription.txt)

Test must supply the get_half/full_neigh method and
store a pointer to it in the KIM API object

6.5

Model_init places compute method pointer in KIM API object

7

University of Minnesota
31

Test

free the KIM API object

Model

Initialize the KIM API object
Kim_api_init(pkim,test,model)

3. model_compute:
unpack/get pointers to data,
then perform computation.

Set (get) pointers to data,
methods and objects or call

KIM_API_allocate(…)

Change model parameters if
necessary

Call KIM_API_model_reinit (…)

Use the Model’s compute
method

KIM_API_model_compute(…)

4. model_destroy routine
(if necessary)

Pointer to KIM API object is the main argument
communicated between Tests and Models

1. model_init, place
compute method pointer
into KIM API object

2. model_reinit, if
parameters of the model
have been changed

deallocate the Model

Call the model_init routine

Initialization of KIM API object, setting and getting data-pointers

can be done through the KIM service routines

8

University of Minnesota
32

#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
//global methods

int KIM_API_init(void * kimmdl, char * testname, char *mdlname);

void KIM_API_allocate(void *kimmdl, intptr_t natoms, int ntypes);

void KIM_API_free(void *kimmdl, int * kimerror);

void KIM_API_print(void *kimmdl, int *kimerror);

void KIM_API_model_compute(void * kimmdl,int *kimerror);

…

//element access methods
int KIM_API_set_data(void *kimmdl,char *nm, intptr_t size, void *dt);

void * KIM_API_get_data(void *kimmdl,char *nm, int * kimerror);

…

KIMserviceC.h

Description of all KIM API service
routines are located in the file:
KIM_API/KIMserviceDescription.txt

Directly place data pointer into the KIM
API object

One can use optional KIM service routine
to allocate standard variables and data

Initialization is done by analyzing test and
model descriptor files

Call model_compute routine by address
stored in KIM API object

Examples of using KIM_API_init and KIM_API_allocate

service routines

University of Minnesota
33

...

! Initialize the KIM object

ier = kim_api_init_f(pkim, testname, modelname)

if (ier.le.0) then

call report_error(__LINE__, "kim_api_init_f", ier)

stop

endif

! Allocate memory via the KIM system

call kim_api_allocate_f(pkim, N, ATypes, ier)

if (ier.le.0) then

call report_error(__LINE__, "kim_api_allocate_f", ier)

stop

endif

...

test_Ar_free_cluster_CLUSTER/test_Ar_free_cluster_CLUSTER.F90

KIM API init will check the consistency of
KIM descriptor file (Test and Model) against
standard.kim, after that will check if Test
and Model match: NBC methods, atom
species (if any) , conventions and argument
data lines

If the match is successful, then the KIM API
object is created. This object conforms to
the Model descriptor KIM file and can store
all described data as pointers

...

if (1 != (status = KIM_API_init(&pkim_periodic_model_0,

testname, argv[1])))

report_error(__LINE__,"KIM_API_init() for MODEL_ZERO

for periodic",status);

...

test_Ar_multiple_models/test_Ar_multiple_models.c

KIM_API_allocate will allocate memory for
all arrays and variables stored in the KIM
API object

It is not mandatory to use
KIM_ API_allocate. A Test can use its own
memory and set address of the data in the
KIM API object.

8.1

Examples of using KIM API get/set data

University of Minnesota
34

...

integer(kind=8) numberOfAtoms;

pointer(pnAtoms,numberOfAtoms)

...

! Unpack data from KIM object

!

pnAtoms = kim_api_get_data_f(pkim, "numberOfAtoms", ier);

if (ier.le.0) then

call report_error(__LINE__, "kim_api_get_data_f", ier)

stop

endif

...

test_Ar_free_cluster_CLUSTER/test_Ar_free_cluster_CLUSTER.F90

...

/* Register memory */

/* model inputs */

status = KIM_API_set_data(pkim_periodic_model_0, "numberOfAtoms", 1, &numberOfAtoms_periodic);

if (1 != status) report_error(__LINE__,"set data",status);

status = KIM_API_set_data(pkim_periodic_model_1, "numberOfAtoms", 1, &numberOfAtoms_periodic);

if (1 != status) report_error(__LINE__,"set data",status);

...

KIM_API_get_data (or kim_api_get_data_f)
will return address of data stored in the
KIM API object.
ier will be equal 1 upon successful
completion, otherwise it will be 0 or
negative
(see KIM_API/KIMserviceDescription.txt)

KIM_API_set_data (or kim_api_set_data_f)
will place the address of data into KIM API
object and will return integer error code :
1– success, 0 or negative – unsuccessful
completion

8.2

test_Ar_multiple_models/test_Ar_multiple_models.c

KIM_API_model_init will call model initialize routine

that in turn will place model compute into KIM object

University of Minnesota
35

...

/* call model init routines */

if (1 != (status =

KIM_API_model_init(pkim_periodic_model_0)))

report_error(__LINE__,"KIM_API_model_init", status);

...

/* call compute functions */

KIM_API_model_compute(pkim_periodic_model_0, &status);

if (1 != status) report_error(__LINE__,"compute",

status);

...

...

subroutine model_<FILL element name>_P_<FILL model name>_init(pkim)

...

! store pointer to compute function in KIM object

if (kim_api_set_data_f(pkim,"compute",one,loc(Compute_Energy_Forces)).ne.1)&

stop '* ERROR: compute keyword not found in KIM object.'

...

DOCs/TEMPLATEs/model_El_P_Template.F90

KIM_API_model_init will call the model_init
routine . KIM_API_model_init utilizes the KIM
standard naming convention in order to make
the call. In C the name of the model init routine
must have all lower case letters in the following
format modelname_init_, for example:
model_ar_p_mlj_cluster_init_

model name

KIM_API_model_compute
calls the address of the
model compute subroutine
stored in KIM API object.

By the time
KIM_API_model_compute is
called the address is placed in
KIM API object by
model_init_ routine

Place address of actual compute routine into the
KIM API object

8.3

test_Ar_multiple_models/test_Ar_multiple_models.c

...

do i = 1,numberOfAtoms

! Get neighbors for atom i

!

atom = i ! request neighbors for atom i

if (HalfOrFull.eq.1) then

ier kim_api_get_half_neigh_f(pkim,1,atom,atom_ret,numnei, &

pnei1atom,pRij_dummy)

else

ier = kim_api_get_full_neigh_f(pkim,1,atom,atom_ret,numnei, &

pnei1atom,pRij_dummy)

endif

if (ier.le.0) then

call report_error(__LINE__, "kim_api_get_*_neigh", ier)

return

endif

! Loop over the neighbors of atom i

!

do jj = 1, numnei

j = nei1atom(jj)

Rij(:) = coor(:,j) - coor(:,i) ! distance vector between i j

Rsqij = dot_product(Rij,Rij) ! compute square distance

if (Rsqij < model_cutsq) then ! particles are interacting?

r = sqrt(Rsqij) ! compute distance

call pair(model_epsilon,model_sigma,model_A,model_B, &

model_C, r,phi,dphi,d2phi) ! compute pair potential

...

An example of using get_half/full_neigh methods

through KIM API service routines

University of Minnesota
36

MODELs/ model_Ar_P_MLJ_NEIGH_PURE_H_F/ model_Ar_P_MLJ_NEIGH_PURE_H_F.F90

Locator mode -- get neighbors
of an atom using half or full
neighbor lists as requested.

KIM_API_get_half/full_neigh will call

the method using the address stored in

the KIM API object (“get_half_neigh” or

“get_full_neigh”). These methods are

supplied by the Test.

KIM_API_get_half/full_neigh will

check if the arguments are set

correctly. It will also convert the result

from oneBaseLists to zeroBaseLists

(or vice versa) if necessary .

Details on the interface and a

description of error codes are in

DOCs/KIMserviceDescription.txt

8.4

1. KIM project aims to overcome the barriers faced by molecular
modelers by creating an online resource for standardized testing,
long-term warehousing and easy retrieval of interatomic models and
data.

2. Tests and Models written by different researcher/developer teams,
in different programming languages and programming styles, must
be able to couple and work together.

3. To address the challenge, KIM API has been created. KIM API is
based on descriptor files where the models and tests provide all
variables and methods needed for their interactions. Using the
descriptor files KIM API routines create an intermediate object that
holds all pointers to the data variables, needed for test-model
communications. Access to the data in that object is done also
through service routines.

Summary

University of Minnesota
37

Appendix

University of Minnesota
38

Every variable that needs to be communicated between

tests and models must be in the descriptor file

University of Minnesota
39

Each Test has its own descriptor file that describes the data it can supply to the
Model and what data it expects the Model to compute. There are no optional
variables in a Test’s descriptor file (because the test knows, a priori, what it will
need to compute).

Each Model has its own descriptor file that describes the data it needs to perform
its computations and what results it can compute. Some of the variables/methods
can be identified as optional. Optional variables/methods are ones that the Test
does not have to provide or are results that the Model will only compute if the
Test explicitly requests it.

KIM service routines (such as kim_api_init_) use both Test and Model descriptor files to:
• Check if the Model and Test match, also check if their descriptor files conform to the KIM API standard
• If they do -- create a KIM API object to store all variables described in the Model’s descriptor file
• Mark each optional variable that is not used by the Test “uncompute” (i.e., do not compute)
Other service routines are used to:
• Set (get) variable or method pointers into (from) the KIM API object

(e.g., kim_api_set_data, kim_api_get_data, etc.)
• Check if the “compute flag” is set to “compute” for a variable in the KIM_API obejct

(kim_api_isit_compute)
• Execute the Model’s compute method (kim_api_model_compute)
• etc…

A1

Model and Test examples available in the current

version of KIM API

University of Minnesota
40

test_Al_FCCcohesive_MI_OPBC

test_Al_free_cluster

test_Ar_FCCcohesiveCutoff_NEIGH_RVEC

test_Ar_FCCcohesive_MI_OPBC

test_Ar_FCCcohesive_NEIGH_PURE

test_Ar_FCCcohesive_NEIGH_RVEC

test_Ar_free_cluster

test_Ar_free_cluster_CLUSTER_C

test_Ar_free_cluster_CLUSTER_F90

test_Ar_multiple_models

test_ArNe_B2cohesive_NEIGH_RVEC

test_Ne_free_cluster

TESTs

model_Al_PF_ErcolessiAdams

model_ArNe_P_MLJ_NEIGH_RVEC_F

model_Ar_P_MLJ_C

model_Ar_P_MLJ_CLUSTER_C

model_Ar_P_MLJ_CLUSTER_F90

model_Ar_P_MLJ_F90

model_Ar_P_MLJ_MI_OPBC_H_F

model_Ar_P_MLJ_NEIGH_PURE_H_F

model_Ar_P_MLJ_NEIGH_RVEC_F

model_Ar_P_MMorse

model_Ne_P_LJ_NEIGH_PURE_H

model_Ne_P_MLJ_NEIGH_RVEC_F

MODELs

Indicates a Test can work (match) with a Model in the current KIM API version

A3

Description of the Models and Tests provided with the KIM API package are given in the files MODELs/EXAMPLES.README

and TESTs/EXAMPLES.README.

KIM API directory structure

University of Minnesota
41

openkim-api-XX.XX.XX

KIM_API MODELs TESTs

KIMservice.h
KIMservise.cpp
KIMserviceC.h
KIMserviceC.c
KIMservice.F90
…

Sample_01_lj_cutoffSample_01_lj_cutoffSample_01_lj_cutoffSample_01_lj_cutoffmodel_Ar_P_MMorse

Sample_01_lj_cutoffSample_01_lj_cutoffSample_01_lj_cutoffSample_01_lj_cutofftest_Al_free_cluster

Makefile
model_Ar_P_MMorse.kim
model_Ar_P_MMorse.c
Plus any other files
needed
…

Makefile
test_Al_free_cluster.kim
test_Al_free_cluster.F90
Plus any other files
needed
…

Each Test and Model has its own descriptor file

A2

Flag contains
additional
information
(all fields are
integers)

rank and shape:
• rank is the number of indices for the array: for 2D it is
2, for 3D it is 3 etc…
•shape is an integer array of size rank and holds the size
(range) of each index.

KIM API object is an array of Base data elements.

Each Base data element can hold a pointer to any relevant data

University of Minnesota
43

•Can hold any
type of array:
real, integer,
pointer…
• Stores enough
information for
a complete
description of
the data

Base data:

Number of fields is fixed to 9

Every field in the Base data structure is a pointer or “pointer size” integer.

Base data type can be used to store all needed data for Tests and Models

peratom

freeable

pointerchanged

ID

auxiliary array: very
useful for 2d arrays
(variable and fixed

dimensions)

pointer to
contiguous

array of data
of size “size”

name contains
description information
like “coordinates”,
“velocities”, “forces”,
etc…

type tells the type for
elements of array:
“real”,
“real*8“integer”,
“integer*8”, pointer

size of data
in terms of
underlying
elements

A4

The end

University of Minnesota
44

