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Motivation

Continuum mechanics: efficient but inadequate at nano scales.
Molecular dynamics: accurate but computationally expensive.
Goal: to develop effective hybrid computational methods for
nano-scale flows.

Key issue: to determine whether an intermediate mesoscale
description is required.

Model

Atomistic model: N, = 1000, p(number density) = 0.8, r,,,= 2.50
and Lennard-Jones (LJ) potential.
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Coarse-grained (CG) model should preserve the thermodynamic
and dynamic properties of the detailed atomistic system.

»Input CG potential table into LAMMPS

Step 3 .
CG model, CG potential and DPD thermostat
Step 2 a Recover diffusion coefficient and viscosity
. Correct thermodynamics and dynamics
Construct CG potential
Recover g(r) and pressure
Correct thermodynamics

»>Pair_style hybrid/overlap
table and dpd/tstat
»>Fix viscosity

Stepl ®

Detailed simulation of the target system
Properties: g(r), Pressure, Transport coefficient >C0mpute msd
Dissipative Particle Dynamics thermostat (DPD)i

»Galilean-invariant thermostat p.=Fi +Fi +Fi
» the dissipative force term mimics
the friction between particles and

dissipates energy.
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Viscosity: Reverse Nonequilibrium Molecular Dynamics
(RNEMD) 51 v,
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Diffusion: Mean Square Displacement (MsD) D:%i<[rm([)m(0)]z>
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»linear response theory

Results and Discussion

Method

Iterative Boltzmann inversion: construct an effective pairwise
potential for the CG model that reproduces the radial distribution
function, g(r), of the detailed atomistic system.u
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Pressure matching: put pressure constraint on the effective
potential through an optimization procedure.
» Objective function

Penalty parameter
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structure Pressure (penalty function)

» Steepest decent algorithm
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Effective potentials for various CG levels

»Potential of mean
force is a good
initial guess for
high CG level case.
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»0% CG case doesn’t reproduce
the LJ potential(r,,,= 2.5) since

we start with a longer-ranged
interaction(..,, = L/2 =5.4).

Convergence testy

#=0% (non CG case) »The potential is closer to
the LJ potential when r_,

g is reduced to 2.5.

»the structure of a dense LJ
(p =0.65) system is mainly
determined by the repulsive
part of the potential.p
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»The attractive part
of the potential is
recovered. Now the g
potentials are more
similar qualitatively. "

»Pressure matching
acts mainly on the

After matching the pressure

CG level: 0%,cutoff=2.5

o Match g(n)
6. %, Matchg(n) & P

CG level: 50%,cutoffed.5

long-range potential.

»Pressure is very i
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sensitive to the

potential, unlike g(r).

efficiency.
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CG (¢) increases.

»v increases as the degree of

Match g(r)
so%, Match g(n) & P

Match the dynamical properties
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»Long-ranged interactions are important in high CG level case.
The cutoff needs to be extended to recover g(r) and pressure.

» The cutoff should be optimized based on the computational
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Viscosity
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> A self-consistent value of y for recovering both diffusion and
viscosity is obtained for each CG level with the optimized cutoff

» The friction coefficient, y, should
increase as the length of interaction

decreases.
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#CG30%, cutoff=3.00
BCG50%, cutoff=3.50
ACG70%, cutoff=4.00
#CG30%, cutoff=L/20
W CG50%, cutoff=L/20

CG70%, cutoff=L/20

Lis the length of
simulation box
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