Computational Rheology via LAMMPS, October 12, 2013 85th Meeting of the Society of Rheology

1 – Overview of Molecular/Particulate Dynamics

Steve Plimpton

sjplimp@sandia.gov

Computational Science Center Sandia National Laboratories, Albuquerque, New Mexico

What is classical MD good for?

- Quantum mechanics (QM) accurate at atomic scale: ~1000 atoms
- Atomic-scale phenomena usually play out at much larger scale
- Mesoscale bigger than atoms, smaller than macroscopic: $\sim 10^{23}$ atoms
- QM and CM (continuum/mesoscale) models cannot be directly compared
- Small molecular dynamics (MD) simulations can reproduce QM
- MD can scale up to millions (billions) of atoms, overlapping low-end of CM
- MD can inform CM models with QM-accurate results

CTH images courtesy of David Damm, Sandia

How does classical MD work?

Classical MD basics

- Each of N particles is a point mass
 - atom
 - group of atoms (united atom)
 - macro- or meso- particle
- Particles interact via empirical force laws
 - all physics in energy potential ⇒ force
 - pair-wise forces (LJ, Coulombic)
 - many-body forces (EAM, Tersoff, REBO)
 - molecular forces (springs, torsions)
 - long-range forces (Ewald)
- Integrate Newton's equations of motion
 - \bullet F = ma
 - set of 3N coupled ODEs
 - advance as far in time as possible
- Properties via time-averaging ensemble snapshots (vs MC sampling)

MD timestep

- Velocity-Verlet formulation:
 - update V by 1/2 step (using F)
 - update X (using V)
 - build neighbor lists (occasionally)
 - compute F (using X)
 - apply constraints & boundary conditions (on F)
 - update V by 1/2 step (using new F)
 - output and diagnostics
- CPU time break-down:
 - inter-particle forces = 80%
 - neighbor lists = 15%
 - everything else = 5%

Aside on MD integration schemes

Most MD codes use some form of explicit Stormer-Verlet

- Only second-order: $\Delta E = |\langle E \rangle E_0| \sim \Delta t^2$
- Global stability trumps local accuracy of high-order schemes
- Can be shown that for Hamiltonian equations of motion, Stormer-Verlet exactly conserves a shadow Hamiltonian and $E-E_s\sim O(\Delta t^2)$
- For users: no energy drift over millions of timesteps
- For developers: easy to decouple integration scheme from efficient algorithms for force evaluation, parallelization

32 atom LJ cluster 200M timesteps $\Delta t = 0.005$

Computational issues

 Are always limited in number of atoms and length of time you can simulate

- These have a large impact on CPU cost of a simulation:
 - level of detail in model
 - cutoff distance of force field
 - long-range Coulombics
 - finding neighbors
 - timestep size
 - parallelism

Coarse-graining of polymer models

• All-atom:

- $\Delta t = 0.5$ -1.0 fmsec for C-H
- C-C distance = 1.5 Angs
- cutoff = 10 Angs

• United-atom:

- # of interactions is 9x less
- $\Delta t = 1.0$ -2.0 fmsec for C-C
- cutoff = 10 Angs
- 20-30x savings over all-atom

Bead-Spring:

- 2-3 C per bead
- $\Delta t \iff$ fmsec mapping is T-dependent
- $2^{1/6}\sigma$ cutoff \Rightarrow 8x in interactions
- can be considerable savings over united-atom

Cutoff in force field

- Forces = 80% of CPU cost
- Short-range forces:
 - O(N) scaling for classical MD
 - constant density assumption
 - pre-factor is cutoff-dependent
- # of pairs/atom = cubic in cutoff
 - 2x the cutoff $\Rightarrow 8x$ the work
- Use as short a cutoff as can justify:
 - LJ = 2.5σ (standard)
 - all-atom and UA = 8-12 Angstroms
 - bead-spring = $2^{1/6}\sigma$ (repulsive only)
 - Coulombics = 12-20 Angstroms
 - solid-state (metals) = few neighbor shells due to screening
- Test sensitivity of your results to cutoff

Long-range Coulombics

- Systems that need it:
 - charged polymers (polyelectrolytes)
 - organic & biological molecules
 - ionic solids, oxides
 - not most metals (screening)
- Computational issue:
 - Coulomb energy only falls off as 1/r
- Options:
 - cutoff: scales as N, but large contribution at 10 Angs
 - Ewald: scales as $N^{3/2}$
 - particle-mesh Ewald: scales as $N \log(N)$
 - multipole: scales as N, but doesn't beat PME
 - multi-level summation: scales as N
 can beat PME for low-accuracy, large proc count

PPPM (Particle-mesh Ewald)

- Hockney & Eastwood, Comp Sim Using Particles (1988).
- Darden, et al, J Chem Phys, 98, p 10089 (1993).
- Like Ewald, except sum over periodic images evaluated:
 - interpolate atomic charge to 3d mesh
 - solve Poisson's equation on mesh (4 FFTs)
 - interpolate E-fields back to atoms

- User-specified accuracy + cutoff \Rightarrow ewald-G + mesh-size
- Scales as $N\sqrt{\log(N)}$ if grow cutoff with N
- Scales as N log(N) if cutoff held fixed

Parallel FFTs (in LAMMPS)

- 3d FFT is 3 sets of 1d FFTs
 - in parallel, 3d grid is distributed across procs
 - 1d FFTs on-processor
 - native library or FFTW (www.fftw.org)
 - multiple transposes of 3d grid
 - data transfer can be costly
- FFTs for PPPM can scale poorly
 - on large # of procs and on clusters

Good news: Cost of PPPM is only \sim 2x more than 8-10 Ang cutoff

Neighbor lists

Problem: how to efficiently find neighbors within cutoff?

- For each atom, test against all others
 - $O(N^2)$ algorithm
- Verlet lists:
 - Verlet, Phys Rev, 159, p 98 (1967)
 - $R_{neigh} = R_{force} + \Delta_{skin}$
 - build list: once every few timesteps
 - other timesteps: scan larger list for neighbors within force cutoff
 - rebuild: any atom moves 1/2 skin
- Link-cells (bins):
 - Hockney et al, J Comp Phys, 14, p 148 (1974)
 - grid domain: bins of size R_{force}
 - each step: search 27 bins for neighbors (or 14 bins)

Neighbor lists (continued)

- Verlet list is $\sim 6x$ savings over bins
 - $V_{sphere} = 4/3 \ \pi r^3$
 - $V_{cube} = 27^{'} r^3$

- Fastest methods do both
 - link-cell to build Verlet list
 - use Verlet list on non-build timesteps
 - O(N) in CPU and memory
 - constant-density assumption
 - this is what LAMMPS implements

Timescale in classical MD

- Timescale of simulation is most serious bottleneck in MD
- Timestep size limited by atomic oscillations
 - C-H bond = 10 fmsec \Rightarrow 1/2 to 1 fmsec timestep
 - Debye frequency = $10^{13} \Rightarrow 2$ fmsec timestep
- Reality is often on a much longer timescale
 - protein folding (msec to seconds)
 - polymer entanglement (msec and up)
 - glass relaxation (seconds to decades)
 - rheological experiments (Hz to KHz)
- Even smaller timestep for tight-binding or quantum-MD

Particle-time metric

- Atom * steps = size of your simulation
- \bullet Up to 10^{12} is desktop scale $\Rightarrow 10^6$ atoms for 10^6 timesteps
 - 1 $\mu {
 m sec/atom/step}$ on CPU core (cheap LJ potential)
 - 2 weeks on single core, 1 day on multi-core desktop
- 10^{12} to 10^{14} is cluster scale
- 10¹⁴ and up is supercomputer scale
- 1 cubic micron (10¹⁰ atoms) for 1-2 nanoseconds (10⁶ steps)
 - $\bullet~1000$ flops per atom per step $\Rightarrow~10^{19}$ flops
 - ullet MD is 10% of peak \Rightarrow 1 day on a Petaflop machine
- GPUs are changing landscape:
 can be 5-10x faster than multicore CPU

Extending timescale via SHAKE

- Ryckaert, et al, J Comp Phys, 23, p 327 (1977)
- Add constraint forces to freeze bond lengths & angles
 - rigid water (TIP3P)
 - C-H bonds in polymer or protein

- Extra work to enforce constraints:
 - solve matrix for each set of non-interacting constraints
 - matrix size = # of constraints
- Allows for 2-3 fmsec timestep

Extending timescale via rRESPA

- Tuckerman et al, J Chem Phys, 97, p 1990 (1992)
- reversible REference System Propagator Algorithm
- Rigorous multiple timestep method
 - time-reversible
 - $\begin{tabular}{ll} \bullet & operator \ calculus \Rightarrow \\ & derivation \ of \ conserved \ ensemble \ quantities \\ \end{tabular}$
- Sub-cycle on fast degrees of freedom
 - innermost loop on bond forces (0.5 fmsec)
 - next loop on 3-4 body forces
 - next loop on van der Waals & short-range Coulombic
 - outermost loop on long-range Coulombic (4 fmsec)
- Can yield 2-3x speed-up, less in parallel due to communication

Classical MD in parallel

- MD is inherently parallel
 - forces on each atom can be computed simultaneously
 - X and V can be updated simultaneously
- Nearly all MD codes are parallelized
 - distributed-memory message-passing (MPI) between nodes
 - MPI or threads (OpenMP, GPU) within node
- MPI = message-passing interface
 - MPICH or OpenMPI
 - assembly-language of parallel computing
 - lowest-common denominator
 - most portable
 - runs on all parallel machines, even on multi- and many-core
 - more scalable than shared-memory parallel

Goals for parallel algorithms

- Scalable
 - short-range MD scales as N
 - optimal parallel scaling is N/P
 - even on clusters with higher communication costs
- Good for short-range forces
 - 80% of CPU
 - long-range Coulombics have short-range component
- Fast for small systems, not just large
 - nano, polymer, bio systems require long timescales
 - 1M steps of 10K atoms is more useful than 10K steps of 1M atoms
- Efficient at finding neighbors
 - liquid state, polymer melts, small-molecule diffusion
 - neighbors change rapidly
 - atoms on a fixed lattice is simpler to parallelize

Parallel algorithms for MD

- Plimpton, J Comp Phys, 117, p 1 (1995)
- 3 classes of algorithms used by all MD codes
 - ① atom-decomposition = split and replicate atoms
 - ② force-decomposition = partition forces
 - spatial-decomposition = geometric split of simulation box
- All 3 methods balance computation optimally as N/P
- Differ in key issues for parallel scalability
 - communication costs
 - load-balance
- Focus on inter-particle force computation, other tasks can be done within any of 3 algorithms
 - molecular forces
 - time integration (NVE/NVT/NPT)
 - thermodynamics, diagnostics, ...

Spatial-decomposition algorithm

- Physical domain divided into 3d boxes, one (or more) per processor
- Each proc computes forces on atoms in its box using ghost info from nearby processors
- Atoms carry along molecular topology as they migrate to new procs
- Communication via 6-way stencil
- Advantages
 - communication scales sub-linear as $(N/P)^{2/3}$, for large problems
 - memory is optimal N/P
- Disadvantages
 - more complex to code efficiently
 - load-imbalance can be problematic

Freely available parallel MD codes

- Bio-oriented MD codes
 - CHARMM: original protein force fields
 - AMBER: original DNA force fields
 - NAMD: fast and scalable
 - Gromacs: fastest and scalable
- Materials-oriented MD codes (can also do bio problems):
 - DL_POLY: distributed by Daresbury Lab, UK
 - LAMMPS: distributed by Sandia National Labs
- GPU-centric MD code (materials and bio):
 - HOOMD: distributed by U Michigan
 - codes above have GPU-capable kernels

What is LAMMPS?

Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov

- Classical MD code
- Open source (GPL), highly portable C++
- 3-legged stool: bio, materials, mesoscale

- Particle simulator at varying length and time scales electrons ⇒ atomistic ⇒ coarse-grained ⇒ continuum
- Spatial-decomposition of simulation domain for parallelism
- Energy minimization, dynamics, non-equilibrium MD
- GPU and OpenMP enhanced
- Can be coupled to other scales: QM, kMC, FE, CFD, ...

Reasons to use LAMMPS

- Versatile
 - bio, materials, mesoscale
 - Sat AM: Tour of LAMMPS Features
 - atomistic, coarse-grained, continuum
 - Sat PM: Coarse-grain Applications with LAMMPS
- ② Good parallel performance
 - Sat AM: Tour of LAMMPS Features
- Second Easy to extend
 - Sun PM: Modifying LAMMPS and New Developments
- Well documented
 - extensive web site
 - 1200 page manual
- 6 Active and supportive user community
 - 40K postings to mail list, 1200 subscribers
 - quick turn-around on Qs posted to mail list

Another reason to use LAMMPS

- 6 Features for rheology (next 2 days)
 - Mesoscale models:
 - DPD = dissipative particle dynamics
 - SPH = smoothed particle hydrodynamics
 - granular = normal & tangential friction
 - FLD = fast lubrication dynamics
 - PD = peridynamics
 - rigid body dynamics
 - Aspherical particles
 - point ellipsoids
 - rigid body collections of points, spheriods, ellipsoids
 - rigid bodies of triangles (3d) and lines (2d)
 - Coarse-grained solvent models
 - rigid water
 - polymers (united-atom, bead-spring)
 - LJ particles
 - stochastic rotation dynamics (SRD)
 - implicit

More rheological options in LAMMPS

Many of these options came from 4-year collaboration with 3M, BASF, Corning, P&G on solvated colloidal modeling

- Particle/particle interactions:
 - pair gayberne, resquared, colloid, yukawa/colloid, vincent
 - pair brownian, lubricate, lubricateU (implicit)
 - pair gran/hooke and gran/hertz
 - pair hybrid/overlay for DLVO models
 - fix srd for colloids + SRD fluid
- Packages:
 - ASPHERE, COLLOID, FLD, GRANULAR
 - RIGID, SRD, USER-LB
- 2 methods for measuring diffusivity
 - mean-squared displacement via compute msd
 - VACF via post-processing of dump file
- 3 methods for measuring shear (or bulk) viscosities
 - NEMD via fix deform and fix nvt/sllod or fix wall
 - Muller-Plathe via fix viscosity
 - Green-Kubo via fix ave/correlate

Examples of rheological simulations

Polymer aggregation under shear

More examples of rheological simulations

Diffusion and viscosity of solvated dimers

Still more examples of rheological simulations

Viscosity of asphericals in SRD fluid

Yet some more examples of rheological simulations

3 methods of measuring viscosity

Finally, enough of rheological simulations

Arbitrary-shape asphericals via lines and triangles

See http://lammps.sandia.gov/movies.html to view all these animations and for links to input scripts