




How does classical MD work?



Classical MD basics

Each of N particles is a point mass

atom
group of atoms (united atom)
macro- or meso- particle

Particles interact via empirical force laws

all physics in energy potential ⇒ force
pair-wise forces (LJ, Coulombic)
many-body forces (EAM, Tersoff, REBO)
molecular forces (springs, torsions)
long-range forces (Ewald)

Integrate Newton’s equations of motion

F = ma
set of 3N coupled ODEs
advance as far in time as possible

Properties via time-averaging ensemble
snapshots (vs MC sampling)



MD timestep

Velocity-Verlet formulation:

update V by 1/2 step (using F)
update X (using V)
build neighbor lists (occasionally)
compute F (using X)
apply constraints & boundary conditions (on F)
update V by 1/2 step (using new F)
output and diagnostics

CPU time break-down:

inter-particle forces = 80%
neighbor lists = 15%
everything else = 5%



Aside on MD integration schemes

Most MD codes use some form of explicit Stormer-Verlet

Only second-order: ∆E = |〈E 〉 − E0| ∼ ∆t2

Global stability trumps local accuracy of high-order schemes
Can be shown that for Hamiltonian equations of motion,
Stormer-Verlet exactly conserves a shadow Hamiltonian and
E − Es ∼ O(∆t2)
For users: no energy drift over millions of timesteps
For developers: easy to decouple integration scheme from
efficient algorithms for force evaluation, parallelization

32 atom LJ cluster
200M timesteps
∆t = 0.005



Computational issues

Are always limited in number of atoms and length of time you
can simulate

These have a large impact on CPU cost of a simulation:

level of detail in model
cutoff distance of force field
long-range Coulombics
finding neighbors
timestep size
parallelism



Coarse-graining of polymer models

All-atom:

∆t = 0.5-1.0 fmsec for C-H
C-C distance = 1.5 Angs
cutoff = 10 Angs

United-atom:

# of interactions is 9x less
∆t = 1.0-2.0 fmsec for C-C
cutoff = 10 Angs
20-30x savings over all-atom

Bead-Spring:

2-3 C per bead
∆t ⇐⇒ fmsec mapping is
T-dependent
21/6σ cutoff ⇒ 8x in interactions
can be considerable savings over
united-atom



Cutoff in force field

Forces = 80% of CPU cost

Short-range forces:

O(N) scaling for classical MD
constant density assumption
pre-factor is cutoff-dependent

# of pairs/atom = cubic in cutoff

2x the cutoff ⇒ 8x the work

Use as short a cutoff as can justify:

LJ = 2.5σ (standard)
all-atom and UA = 8-12 Angstroms
bead-spring = 21/6σ (repulsive only)
Coulombics = 12-20 Angstroms
solid-state (metals) =
few neighbor shells
due to screening

Test sensitivity of your results to cutoff



Long-range Coulombics

Systems that need it:

charged polymers (polyelectrolytes)
organic & biological molecules
ionic solids, oxides
not most metals (screening)

Computational issue:

Coulomb energy only falls off as 1/r

Options:

cutoff: scales as N, but large contribution at 10 Angs
Ewald: scales as N3/2

particle-mesh Ewald: scales as N log(N)
multipole: scales as N, but doesn’t beat PME
multi-level summation: scales as N
can beat PME for low-accuracy, large proc count



PPPM (Particle-mesh Ewald)

Hockney & Eastwood, Comp Sim Using Particles (1988).

Darden, et al, J Chem Phys, 98, p 10089 (1993).

Like Ewald, except sum over periodic images evaluated:

interpolate atomic charge to 3d mesh
solve Poisson’s equation on mesh (4 FFTs)
interpolate E-fields back to atoms

User-specified accuracy + cutoff ⇒ ewald-G + mesh-size

Scales as N
√

log(N) if grow cutoff with N

Scales as N log(N) if cutoff held fixed



Parallel FFTs (in LAMMPS)

3d FFT is 3 sets of 1d FFTs

in parallel, 3d grid is distributed
across procs
1d FFTs on-processor
native library or FFTW
(www.fftw.org)
multiple transposes of 3d grid
data transfer can be costly

FFTs for PPPM can scale poorly

on large # of procs and on clusters

Good news: Cost of PPPM is only ∼2x more than 8-10 Ang cutoff



Neighbor lists

Problem: how to efficiently find neighbors within cutoff?

For each atom, test against all others

O(N2) algorithm

Verlet lists:

Verlet, Phys Rev, 159, p 98 (1967)
Rneigh = Rforce + ∆skin

build list: once every few timesteps
other timesteps: scan larger list for

neighbors within force cutoff
rebuild: any atom moves 1/2 skin

Link-cells (bins):

Hockney et al, J Comp Phys,
14, p 148 (1974)

grid domain: bins of size Rforce

each step: search 27 bins for
neighbors (or 14 bins)



Neighbor lists (continued)

Verlet list is ∼6x savings over bins

Vsphere = 4/3 πr3

Vcube = 27 r3

Fastest methods do both

link-cell to build Verlet list
use Verlet list on non-build timesteps
O(N) in CPU and memory
constant-density assumption
this is what LAMMPS implements



Timescale in classical MD

Timescale of simulation is most serious bottleneck in MD

Timestep size limited by atomic oscillations

C-H bond = 10 fmsec ⇒ 1/2 to 1 fmsec timestep
Debye frequency = 1013 ⇒ 2 fmsec timestep

Reality is often on a much longer timescale

protein folding (msec to seconds)
polymer entanglement (msec and up)
glass relaxation (seconds to decades)
rheological experiments (Hz to KHz)

Even smaller timestep for tight-binding or quantum-MD



Particle-time metric

Atom * steps = size of your simulation

Up to 1012 is desktop scale ⇒ 106 atoms for 106 timesteps

1 µsec/atom/step on CPU core (cheap LJ potential)
2 weeks on single core, 1 day on multi-core desktop

1012 to 1014 is cluster scale

1014 and up is supercomputer scale

1 cubic micron (1010 atoms) for 1-2 nanoseconds (106 steps)

1000 flops per atom per step ⇒ 1019 flops
MD is 10% of peak ⇒ 1 day on a Petaflop machine

GPUs are changing landscape:
can be 5-10x faster than multicore CPU



Extending timescale via SHAKE

Ryckaert, et al, J Comp Phys, 23, p 327 (1977)

Add constraint forces to freeze bond lengths & angles

rigid water (TIP3P)
C-H bonds in polymer or protein

Extra work to enforce constraints:

solve matrix for each set of
non-interacting constraints

matrix size = # of constraints

Allows for 2-3 fmsec timestep



Extending timescale via rRESPA

Tuckerman et al, J Chem Phys, 97, p 1990 (1992)

reversible REference System Propagator Algorithm

Rigorous multiple timestep method

time-reversible
operator calculus ⇒

derivation of conserved ensemble quantities

Sub-cycle on fast degrees of freedom

innermost loop on bond forces (0.5 fmsec)
next loop on 3-4 body forces
next loop on van der Waals & short-range Coulombic
outermost loop on long-range Coulombic (4 fmsec)

Can yield 2-3x speed-up, less in parallel due to communication



Classical MD in parallel

MD is inherently parallel

forces on each atom can be computed simultaneously
X and V can be updated simultaneously

Nearly all MD codes are parallelized

distributed-memory message-passing (MPI) between nodes
MPI or threads (OpenMP, GPU) within node

MPI = message-passing interface

MPICH or OpenMPI
assembly-language of parallel computing
lowest-common denominator
most portable
runs on all parallel machines, even on multi- and many-core
more scalable than shared-memory parallel



Goals for parallel algorithms

Scalable

short-range MD scales as N
optimal parallel scaling is N/P
even on clusters with higher communication costs

Good for short-range forces

80% of CPU
long-range Coulombics have short-range component

Fast for small systems, not just large

nano, polymer, bio systems require long timescales
1M steps of 10K atoms is more useful than 10K steps of 1M
atoms

Efficient at finding neighbors

liquid state, polymer melts, small-molecule diffusion
neighbors change rapidly
atoms on a fixed lattice is simpler to parallelize



Parallel algorithms for MD

Plimpton, J Comp Phys, 117, p 1 (1995)

3 classes of algorithms used by all MD codes
1 atom-decomposition = split and replicate atoms
2 force-decomposition = partition forces
3 spatial-decomposition = geometric split of simulation box

All 3 methods balance computation optimally as N/P

Differ in key issues for parallel scalability

communication costs
load-balance

Focus on inter-particle force computation,
other tasks can be done within any of 3 algorithms

molecular forces
time integration (NVE/NVT/NPT)
thermodynamics, diagnostics, ...



Spatial-decomposition algorithm

Physical domain divided into 3d boxes,
one (or more) per processor

Each proc computes forces on atoms
in its box using ghost info
from nearby processors

Atoms carry along molecular topology
as they migrate to new procs

Communication via 6-way stencil

Advantages

communication scales sub-linear as
(N/P)2/3, for large problems

memory is optimal N/P

Disadvantages

more complex to code efficiently
load-imbalance can be problematic



Freely available parallel MD codes

Bio-oriented MD codes

CHARMM: original protein force fields
AMBER: original DNA force fields
NAMD: fast and scalable
Gromacs: fastest and scalable

Materials-oriented MD codes (can also do bio problems):

DL POLY: distributed by Daresbury Lab, UK
LAMMPS: distributed by Sandia National Labs

GPU-centric MD code (materials and bio):

HOOMD: distributed by U Michigan
codes above have GPU-capable kernels



What is LAMMPS?

Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov

Classical MD code

Open source (GPL), highly portable C++

3-legged stool: bio, materials, mesoscale

Particle simulator at varying length and time scales
electrons ⇒ atomistic ⇒ coarse-grained ⇒ continuum

Spatial-decomposition of simulation domain for parallelism

Energy minimization, dynamics, non-equilibrium MD

GPU and OpenMP enhanced

Can be coupled to other scales: QM, kMC, FE, CFD, ...



Reasons to use LAMMPS

1 Versatile
bio, materials, mesoscale

Sat AM: Tour of LAMMPS Features

atomistic, coarse-grained, continuum

Sat PM: Coarse-grain Applications with LAMMPS

2 Good parallel performance

Sat AM: Tour of LAMMPS Features

3 Easy to extend

Sun PM: Modifying LAMMPS and New Developments

4 Well documented

extensive web site
1200 page manual

5 Active and supportive user community

40K postings to mail list, 1200 subscribers
quick turn-around on Qs posted to mail list



Another reason to use LAMMPS

6 Features for rheology (next 2 days)

Mesoscale models:
DPD = dissipative particle dynamics
SPH = smoothed particle hydrodynamics
granular = normal & tangential friction
FLD = fast lubrication dynamics
PD = peridynamics
rigid body dynamics

Aspherical particles
point ellipsoids
rigid body collections of points, spheriods, ellipsoids
rigid bodies of triangles (3d) and lines (2d)

Coarse-grained solvent models
rigid water
polymers (united-atom, bead-spring)
LJ particles
stochastic rotation dynamics (SRD)
implicit



More rheological options in LAMMPS

Many of these options came from 4-year collaboration
with 3M, BASF, Corning, P&G on solvated colloidal modeling

Particle/particle interactions:
pair gayberne, resquared, colloid, yukawa/colloid, vincent
pair brownian, lubricate, lubricateU (implicit)
pair gran/hooke and gran/hertz
pair hybrid/overlay for DLVO models
fix srd for colloids + SRD fluid

Packages:
ASPHERE, COLLOID, FLD, GRANULAR
RIGID, SRD, USER-LB

2 methods for measuring diffusivity
mean-squared displacement via compute msd
VACF via post-processing of dump file

3 methods for measuring shear (or bulk) viscosities
NEMD via fix deform and fix nvt/sllod or fix wall
Muller-Plathe via fix viscosity
Green-Kubo via fix ave/correlate



Examples of rheological simulations

Polymer aggregation under shear



More examples of rheological simulations

Diffusion and viscosity of solvated dimers



Still more examples of rheological simulations

Viscosity of asphericals in SRD fluid



Yet some more examples of rheological simulations

3 methods of measuring viscosity



Finally, enough of rheological simulations

Arbitrary-shape asphericals via lines and triangles

See http://lammps.sandia.gov/movies.html to view all these
animations and for links to input scripts


