Three-dimensional Shear in Granular Flow
X. Cheng, J. B. Lechman, A. Fernandez-Barbero, G. S. Grest, H. M. Jaeger, G. S. Karczmar, M. E. Mobius, S. R. Nagel, Phys Rev Lett, 96, 038001 (2006).
The evolution of granular shear flow is investigated as a function of height in a split-bottom Couette cell. Using particle tracking, magnetic-resonance imaging, and large-scale simulations, we find a transition in the nature of the shear as a characteristic height H-* is exceeded. Below H-* there is a central stationary core; above H-* we observe the onset of additional axial shear associated with torsional failure. Radial and axial shear profiles are qualitatively different: the radial extent is wide and increases with height, while the axial width remains narrow and fixed.
Return to Publications page