Shape memory effect in Cu nanowires
W. W. Liang, M. Zhou, and F. J. Ke, Nano Letters, 5, 2039-2043 (2005).
A rubber-like pseudoelastic behavior is discovered in single-crystalline face-centered-cubic (FCC) Cu nanowires in atomistic simulations. Nonexistent in bulk Cu, this phenomenon is associated primarily with a reversible crystallographic lattice reorientation driven by the high surface-stress-induced internal stresses due to high surface-to-volume ratios at the nanoscale level. The temperature-dependence of this behavior leads to a shape memory effect (SME). Under tensile loading and unloading, the nanowires exhibit recoverable strains up to over 50%, well beyond the typical recoverable strains of 5-8% for most bulk shape memory alloys (SMAs). This behavior is well-defined for wires between 1.76 and 3.39 nm in size over the temperature range of 100-900 K.
Return to Publications page