Recent advances in single-asperity nanotribology

I. Szlufarska, M. Chandross, R. W. Carpick, J Physics D - Applied Physics, 41, 123001 (2008).

As the size of electronic and mechanical devices shrinks to the nanometre regime, performance begins to be dominated by surface forces. For example, friction, wear and adhesion are known to be central challenges in the design of reliable micro- and nano-electromechanical systems (MEMS/NEMS). Because of the complexity of the physical and chemical mechanisms underlying atomic-level tribology, it is still not possible to accurately and reliably predict the response when two surfaces come into contact at the nanoscale. Fundamental scientific studies are the means by which these insights may be gained. We review recent advances in the experimental, theoretical and computational studies of nanotribology. In particular, we focus on the latest developments in atomic force microscopy and molecular dynamics simulations and their application to the study of single-asperity contact.

Return to Publications page