Phonon dispersion measured directly from molecular dynamics simulations

L. T. Kong, Comp Phys Comm, 182, 2201-2207 (2011).

A method to measure the phonon dispersion of a crystal based on molecular dynamics simulation is proposed and implemented as an extension to an open source classical molecular dynamics simulation code LAMMPS. In the proposed method, the dynamical matrix is constructed by observing the displacements of atoms during molecular dynamics simulation, making use of the fluctuation–dissipation theory. The dynamical matrix can then be employed to compute the phonon spectra by evaluating its eigenvalues. It is found that the proposed method is capable of yielding the phonon dispersion accurately, while taking into account the anharmonic effect on phonons simultaneously. The implementation is done in the style of fix of LAMMPS, which is designed to run in parallel and to exploit the functions provided by LAMMPS; the measured dynamical matrices could be passed to an auxiliary postprocessing code to evaluate the phonons.

Return to Publications page