Exploring pressure-dependent inelastic deformation and failure in bonded granular composites: An energetic materials perspective

JT Clemmer and KN Long and JA Brown, MECHANICS OF MATERIALS, 184, 104693 (2023).

DOI: 10.1016/j.mechmat.2023.104693

In polymer-filled granular composites, damage may develop in mechanical loading prior to material failure. Damage mechanisms such as microcracking or plastic deformation in the binder phase can substantially alter the material's mesostructure. For energetic materials, such as solid propellants and plastic bonded explosives, these mesostructural changes can have far reaching effects including degraded mechanical properties, poten-tially increased sensitivity to further insults, and changes in expected performance. Unfortunately, predicting damage is nontrivial due to the complex nature of these composites and the entangled interactions between inelastic mechanisms. In this work, we assess the current literature of experimental knowledge, focusing on the pressure-dependent shear response, and propose a simple simulation framework of bonded particles to study four limiting-case material formulations at both meso-and macro-scales. To construct the four cases, we systematically vary the relative interfacial strength between the polymer binder and granular filler phase and also vary the polymer's glass transition temperature relative to operating temperature which determines how much the binder can plastically deform. These simulations identify key trends in global mechanical response, such as the emergence of strain hardening or softening regimes with increasing pressure which qualitatively resemble experimental results. By quantifying the activation of different inelastic mechanisms, such as bonds breaking and plastically straining, we identify when each mechanism becomes relevant and provide insight into potential origins for changes in mechanical responses. The locations of broken bonds are also used to define larger, mesoscopic cracks to test various metrics of damage. We primarily focus on triaxial compression, but also test the opposite case of triaxial extension to highlight the impact of Lode angle on mechanical behavior.

Return to Publications page