Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries

C Li and R Kingsbury and AS Thind and A Shyamsunder and TT Fister and RF Klie and KA Persson and LF Nazar, NATURE COMMUNICATIONS, 14, 3067 (2023).

DOI: 10.1038/s41467-023-38460-2

Achieving high-performance aqueous Zn-metal batteries is a challenge. Here, authors report a eutectic electrolyte that concurrently enables selective Zn2+ intercalation at the cathode and highly reversible Zn metal plating/stripping, resulting in a benchmark high-areal capacity Zn anode-free cell. Two major challenges hinder the advance of aqueous zinc metal batteries for sustainable stationary storage: (1) achieving predominant Zn-ion (de)intercalation at the oxide cathode by suppressing adventitious proton co-intercalation and dissolution, and (2) simultaneously overcoming Zn dendrite growth at the anode that triggers parasitic electrolyte reactions. Here, we reveal the competition between Zn(2+)vs proton intercalation chemistry of a typical oxide cathode using ex-situ/operando techniques, and alleviate side reactions by developing a cost-effective and non-flammable hybrid eutectic electrolyte. A fully hydrated Zn2+ solvation structure facilitates fast charge transfer at the solid/electrolyte interface, enabling dendrite-free Zn plating/stripping with a remarkably high average coulombic efficiency of 99.8% at commercially relevant areal capacities of 4 mAh cm(-2) and function up to 1600 h at 8 mAh cm(-2). By concurrently stabilizing Zn redox at both electrodes, we achieve a new benchmark in Zn-ion battery performance of 4 mAh cm(-2) anode-free cells that retain 85% capacity over 100 cycles at 25 degrees C. Using this eutectic-design electrolyte, Zn | |Iodine full cells are further realized with 86% capacity retention over 2500 cycles. The approach represents a new avenue for long-duration energy storage.

Return to Publications page