Fabricating strong and tough aramid fibers by small addition of carbon nanotubes

JJ Luo and YY Wen and XZ Jia and XD Lei and ZF Gao and MQ Jian and ZH Xiao and LY Li and JW Zhang and T Li and HL Dong and XQ Wu and EL Gao and K Jiao and J Zhang, NATURE COMMUNICATIONS, 14, 3019 (2023).

DOI: 10.1038/s41467-023-38701-4

High-performance fibers are promising materials in the impact protection field but fabricating fibers with high strength and high toughness is challenging. Here, the authors polymerize carbon nanotubes into aramid fibers to simultaneously improve strength and toughness. Synthetic high- performance fibers present excellent mechanical properties and promising applications in the impact protection field. However, fabricating fibers with high strength and high toughness is challenging due to their intrinsic conflicts. Herein, we report a simultaneous improvement in strength, toughness, and modulus of heterocyclic aramid fibers by 26%, 66%, and 13%, respectively, via polymerizing a small amount (0.05 wt%) of short aminated single-walled carbon nanotubes (SWNTs), achieving a tensile strength of 6.44 +/- 0.11 GPa, a toughness of 184.0 +/- 11.4 MJ m(-3), and a Young's modulus of 141.7 +/- 4.0 GPa. Mechanism analyses reveal that short aminated SWNTs improve the crystallinity and orientation degree by affecting the structures of heterocyclic aramid chains around SWNTs, and in situ polymerization increases the interfacial interaction therein to promote stress transfer and suppress strain localization. These two effects account for the simultaneous improvement in strength and toughness.

Return to Publications page