Dynamic Observation of the Coulomb Explosion and Field Evaporation of a Few-Layer Graphene Nanoribbon

JK Wei and QH Xu and Z Xu and WL Wang and S Meng and XD Bai, SMALL, 19 (2023).

DOI: 10.1002/smll.202300226

The Coulomb explosion and field evaporation are frequently observed physical phenomena for a metallic tip under an external electric field, which can modify the structures of the tip and have broad applications, such as in the atomic-probe tomography and field ion microscopy. However, the mechanistic comprehending of how they change the structures of the tip and the differences between them are not clear. Here, dynamic observations of Coulomb explosions and field evaporations on the positively biased and charged few-layer graphene (FLG) nanoribbon inside a transmission electron microscope are reported. By combining the atomic-scale molecular dynamic simulations, it is shown that the FLG is split into several sheets under Coulomb explosion. It is also observed to break by emitting the carbon ions/segments under the field evaporation. It is further demonstrated that the split and breaking of FLG can be tuned by the shape of the nanoribbon. FLG ribbons with sharp tips have splitting and breaking occur in sequence. FLG with blunt tips break without a split. These results provide a fundamental understanding of Coulomb explosion and field evaporation in graphene nanomaterials and suggest potential methods to engineer graphene-based nanostructures.

Return to Publications page