A Combined Machine Learning and High-Energy X-ray Diffraction Approach to Understanding Liquid and Amorphous Metal Oxides

G Sivaraman and G Csanyi and A Vazquez-Mayagoitia and IT Foster and SK Wilke and R Weber and CJ Benmore, JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 91, 091009 (2022).

DOI: 10.7566/JPSJ.91.091009

Determining the structure-property relations of liquid and amorphous metal oxides is challenging, due to their variable short-range order and polyhedral connectivity. To predict chemically realistic structures, we have developed a Machine Learned, Gaussian Approximation Potential (GAP) for HfO2, with a focus on enhanced sampling of the training database and accurate density functional theory calculations. By using training datasets for the GAP model at the level of Density Functional Theory- Strongly Constrained and Appropriately Normed (DFT-SCAN) level of theory, our results show that the topology of both the low viscosity liquid and the amorphous form are dominated by edge-shared chains and small corner-shared rings of polyhedra. This topology is shown to be consistent with the structure of other liquid and amorphous transition metal oxides of variable ion size, such as TiO2 and ZrO2. Current limitations of the ML-GAP modeling method for obtaining glass structures and future perspectives are also discussed.

Return to Publications page