Paradigms of frustration in superionic solid electrolytes

BC Wood and JB Varley and KE Kweon and P Shea and AT Hall and A Grieder and VP Aguirre and D Rigling and EL Ventura and C Stancill and N Adelstein, PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 379, 20190467 (2021).

DOI: 10.1098/rsta.2019.0467

Superionic solid electrolytes have widespread use in energy devices, but the fundamental motivations for fast ion conduction are often elusive. In this Perspective, we draw upon atomistic simulations of a wide range of superionic conductors to illustrate some ways frustration can lower diffusion cation barriers in solids. Based on our studies of halides, oxides, sulfides and hydroborates and a survey of published reports, we classify three types of frustration that create competition between different local atomic preferences, thereby flattening the diffusive energy landscape. These include chemical frustration, which derives from competing factors in the anion-cation interaction; structural frustration, which arises from lattice arrangements that induce site distortion or prevent cation ordering; and dynamical frustration, which is associated with temporary fluctuations in the energy landscape due to anion reorientation or cation reconfiguration. For each class of frustration, we provide detailed simulation analyses of various materials to show how ion mobility is facilitated, resulting in stabilizing factors that are both entropic and enthalpic in origin. We propose the use of these categories as a general construct for classifying frustration in superionic conductors and discuss implications for future development of suitable descriptors and improvement strategies. This article is part of the Theo Murphy meeting issue 'Understanding fast-ion conduction in solid electrolytes'.

Return to Publications page