Improvement of the BISON U3Si2 modeling capabilities based on multiscale developments to modeling fission gas behavior

KA Gamble and G Pastore and MWD Cooper and DA Andersson and C Matthews and B Beeler and LK Aagesen and T Barani and D Pizzocri, JOURNAL OF NUCLEAR MATERIALS, 555, 153097 (2021).

DOI: 10.1016/j.jnucmat.2021.153097

Uranium silicide (U3Si2) is a concept explored as a potential alternative to UO2 fuel used in light water reactors (LWRs) since it may improve accident tolerance and economics due to its higher thermal conductivity and increased uranium density. U3Si2 has been previously used in research reactors in the form of dispersion fuel which operates at lower temperatures than commercial LWRs. The research reactor data illustrated that significant gaseous swelling occurs as the fuel burnup increases. Therefore, it is imperative to understand the fission gas behavior of U3Si2 under higher temperature LWR operating conditions. In this work, molecular dynamics and phase-field modeling techniques are used to reduce the uncertainty in select modeling assumptions made in developing the fission gas behavior model for U3Si2 in the BISON fuel performance code. To support the implementation of a U3Si2 fission gas model in BISON, cluster dynamics simulations of irradiation enhanced Xe diffusion have been carried out. Similarly, MD simulations were used to predict the athermal contribution due to atomic mixing during ballistic damage cascades. By combining our results with literature DFT data for thermal equilibrium diffusion, Xe diffusivity has been described over a wide range of temperatures for in-reactor conditions. These lower length scale informed models are then utilized in the assessment of BISON U3Si2 modeling capabilities by simulating the ATF-1 experiments irradiated in the Advanced Test Reactor (ATR). Sensitivity analysis (SA) and uncertainty quantification (UQ) are included as part of the assessment process to identify where further experiments and lower length scale modeling would be beneficial. The multiscale modeling approach utilized in this work can be applied to new fuel concepts being explored for both LWRs and advanced reactors (e.g., uranium nitride, uranium carbide). (C) 2021 Elsevier B.V. All rights reserved.

Return to Publications page