Effects of Strain Rate and Temperature on the Mechanical Properties of Simulated Silica Ionogels

R Skelton and RE Jones, JOURNAL OF PHYSICAL CHEMISTRY B, 125, 8659-8671 (2021).

DOI: 10.1021/acs.jpcb.1c04564

Ionogels are hybrid materials formed by impregnating the pore space of a solid matrix with a conducting ionic liquid. By combining the properties of both component materials, ionogels can act as self-supporting electrolytes in Li batteries. In this study, molecular dynamics simulations are used to investigate the dependence of mechanical properties of silica ionogels on solid fraction, temperature, and pore width. Comparisons are made with corresponding aerogels. We find that the solid matrix fraction increases the moduli and strength of the ionogel. This varies nonlinearly with temperature and strain rate, according to the contribution of the viscous ionic liquid to resisting deformation. Owing to the temperature and strain sensitivity of the ionic liquid viscosity, the mechanical properties approach a linear mixing law at high temperature and low strain rates. The median pore width of the solid matrix plays a complex role, with its influence varying qualitatively with deformation mode. Narrower pores increase the relevant elastic modulus under shear and uniaxial compression but reduce the modulus obtained under uniaxial tension. Conversely, shear and tensile strength are increased by narrowing the pore width. All of these pore size effects become more pronounced as the silica fraction increases. Pore size effects, similar to the effects of temperature and strain rate, are linked to the ease of fluid redistribution within the pore space during deformation-induced changes in the geometry of the pores.

Return to Publications page