Molecular dynamics investigation of the stopping power of warm dense hydrogen for electrons

Y Liu and X Liu and S Zhang and H Liu and CJ Mo and ZG Fu and JY Dai, PHYSICAL REVIEW E, 103, 063215 (2021).

DOI: 10.1103/PhysRevE.103.063215

A variety of theoretical models have been proposed to calculate the stopping power of charged particles in matter, which is a fundamental issue in many fields. However, the approximation adopted in these theories will be challenged under warm dense matter conditions. Molecular dynamics (MD) simulation is a good way to validate the effectiveness of these models. We investigate the stopping power of warm dense hydrogen for electrons with projectile energies ranging from 400-10000 eV by means of an electron force field (eFF) method, which can effectively avoid the Coulomb catastrophe in conventional MD calculations. It is found that the stopping power of warm dense hydrogen decreases with increasing temperature of the sample at those high projectile velocities. This phenomenon could be explained by the effect of electronic structure dominated by bound electrons, which is further explicated by a modified random phase approximation (RPA) model based on local density approximation proper to inhomogeneous media. Most of the models extensively accepted by the plasma community, e.g., Landau- Spitzer model, Brown-Preston-Singleton model and RPA model, cannot well address the effect caused by bound electrons so that their predictions of stopping power contradict our result. Therefore, the eFF simulations of this paper reveals the important role played by the bound electrons on stopping power in warm dense plasmas.

Return to Publications page