Sulfurized Polyacrylonitrile (SPAN): Changes in Mechanical Properties during Electrochemical Lithiation

SP Beltran and PB Balbuena, JOURNAL OF PHYSICAL CHEMISTRY C, 125, 13185-13194 (2021).

DOI: 10.1021/acs.jpcc.1c02966

Sulfurized polyacrylonitrile (SPAN) is a promising material for stable lithium-sulfur (Li-S) batteries that can potentially satisfy the demand for high-density energy storage devices for electric vehicles (EVs). However, important physical and chemical properties of the SPAN cathode material are not yet well understood. For example, the SPAN mechanical behavior that depends on the structure and chemistry of the material generated during synthesis and the mechanical response evolution during battery discharge have been scarcely investigated. This work addresses the effects of electrochemical lithiation on the SPAN mechanical integrity via uniaxial tensile loading tests using molecular dynamics with the ReaxFF potential. We evaluate the volume expansion, Young's modulus, yield strength, and ultimate tensile strength with increasing lithium contents. Our results show how the degree of graphitization of the carbonized skeleton impacts the SPAN ability to withstand the volume expansion-induced structural stresses upon lithiation. We describe the fracture mechanisms and find out a ductility loss with increasing lithium contents.

Return to Publications page